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We review the theory and phenomenology of effective supergravity theories based on orb-
ifold compactifications of the weakly-coupled heterotic string. In particular, we consider
theories in which the four-dimensional theory displays target space modular invariance
and where the dilatonic mode undergoes Kähler stabilization. A self-contained exposition

of effective Lagrangian approaches to gaugino condensation and heterotic string theory is
presented, leading to the development of the models of Binétruy, Gaillard and Wu. Var-
ious aspects of the phenomenology of this class of models are considered. These include
issues of supersymmetry breaking and superpartner spectra, the role of anomalous U(1)
factors, issues of flavor and R-parity conservation, collider signatures, axion physics, and
early universe cosmology. For the vast majority of phenomenological considerations the
theories reviewed here compare quite favorably to other string-derived models in the
literature. Theoretical objections to the framework and directions for further research
are identified and discussed.

Introduction

Why should we be inclined to believe in string theory? Unless we are remarkably

fortunate, and the scale at which string resonances appear is accessible to forthcom-

ing experiments, there will not be – indeed there cannot be – any direct evidence

that some particular construction of string theory is correct. Wherefore, then, the

great interest of the high energy community in this subject? Clearly the answer is

in what string theory is (uniquely) capable of explaining.

To some the most salient feature of string theory is its great promise as a consis-

tent theory of quantum gravity. But for those whose interest lies in understanding

the phenomena relevant at energies closer to the electroweak scale it is rather string

theory’s capability to explain such manifest properties of particle physics as the

presence of three generations, the gauge group of the Standard Model (SM), the

representations of the various matter fields, and the Yukawa interactions that do

such things as give mass to the fermions but do not do such things as make the

proton decay. Consistent string constructions which address these issues generally

have supersymmetry present on the string worldsheet (base space), as well as in

the spectrum of the effective field theory description (target space). This highly

desirable phenomenological property has not been observed in nature. But if super-

symmetry is at all relevant in understanding electroweak-scale physics new states

and interactions will likely be observed at the CERN Large Hadron Collider (LHC).
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There is, therefore, a great opportunity for string theory to make contact with

particle physics observations at accessible energies. The elucidation of these points

of contact is the purpose of the field of string phenomenology. It is sometimes useful

to divide this field into the study of two logically distinct problems. The first we

might refer to as the “problem of initial conditions.” This is the determination

of the massless spectrum of gauge bosons and matter representations – as well as

the allowed superpotential couplings amongst these fields – upon compactification

of the ten-dimensional (10D) theory to four dimensions (4D) on a manifold which

preservesN = 1 supersymmetry. The ideal compactification need not necessarily be

the one which provides solely the fields of the Minimal Supersymmetric Standard

Model (MSSM), but this has often been taken to be the supreme goal of those

who study superstring model-building. While some approaches have come close

to producing exclusively the MSSM field content, gauge group and renormalizable

superpotential it is not unfair to say that none can yet truly claim success in this

regard.

Furthermore, different choices of string compactification imply different sets of

moduli fields in the low-energy effective Lagrangian. Very roughly speaking, these

moduli parameterize the geometry of the compact space. Their role in the low-

energy Lagrangian is to determine certain dimensionless parameters (such as gauge

and Yukawa coupling constants), yet they have no potential at all at the classical

level. That is to say, they are truly flat directions in the scalar potential of the

theory. There is therefore a second class of problems for the string phenomenolo-

gist: the “problem of dynamics.” This latter class of problems includes the issues

of anomalous U(1)X cancelation, supersymmetry breaking, dynamical electroweak

symmetry breaking, and so forth. The two problems can to a large degree be sep-

arated (at least formally), and it is the second class of questions which we wish to

address in this review.

Over the years there has been considerable progress in understanding the struc-

ture of effective actions describing the low-energy dynamics of massless fields in

4D superstring theory. This success began in the context of (weakly-coupled) het-

erotic string theory, where the basic program was to extract the relevant terms

in the field-theoretical Lagrangian from the S-matrix elements computed within

the full-fledged superstring theory.1 Many important quantities were determined

at the classical level, including the Kähler potentials and the gauge and Yukawa

couplings for orbifold compactifications of heterotic superstrings. Later, the pro-

gram of reconstructing effective Lagrangians from string amplitudes was pursued

to higher genus in the string loop expansion.2,3 An important development was the

observation that the duality symmetry4,5 between small and large radius toroidal

compactifications extends to a much larger symmetry group of the so-called target

space modular transformations acting on the moduli fields.6 This symmetry can

be very helpful when studying the moduli-dependence of the effective actions for

orbifold compactifications.7,8



Kähler Stabilized, Modular Invariant Heterotic String Models 3

In this work we will review the theoretical construction and high-energy moti-

vation for a particular class of weakly-coupled heterotic string models. Much of the

machinery, and a great deal of the resulting model-building, will certainly touch on

issues of low-energy string phenomenology common to other string theory starting

points as well. As the nucleus of this construction was presented in a sequence of

papers by Binétruy, Gaillard and Wu we will sometimes refer to the class as the

“BGW model,” (or models). They are generally characterized by the presence of

Kähler stabilization to provide a realistic minimum for the dilaton modulus. We

will present this mechanism in detail in this review, and study the resulting phe-

nomenology at length. We choose this class not because we necessarily believe it

to be the correct model of Nature – though we will see that it has many excel-

lent phenomenological features – but because it is, to date, the most complete

model of supersymmetric particle physics arising from string theory in the liter-

ature. By this we mean that the phenomenology of this class has been studied

in great depth from multiple angles: spectrum and superpotential selection rules,

effective Lagrangian construction, gaugino condensation and moduli stabilization,

supersymmetry breaking and transmission to the observable sector, anomaly cance-

lation, superpartner spectra, flavor-changing and rare processes, collider signatures,

cosmology, and so on.

In certain phenomenological areas this class of models possesses remarkably

favorable characteristics; in other areas less so. There are also certain theoretical

objections that can be raised to the treatment presented here and we will give voice

to these objections in our concluding chapter. But the goal of this review is not

to promote the Kähler stabilized, modular invariant models of the heterotic string;

but rather to promote the sometimes arduous act of building complete models of

4D superstring dynamics generally. The most significant property of the class of

models considered here, therefore, is that the analysis has been performed in all of

these phenomenological areas – for a single class of theories. To our knowledge, no

other class of models (whether of string-theoretic motivation or otherwise) has been

pushed as far in as many different directions as this class. As such, the BGW model

provides a paradigm for what a “complete” theory looks like. The importance of

this idea of synthesis and completeness has been stressed recently as crucial to any

effort in effectively making contact between superstring models and the forthcoming

data era we are about to enter.9,10

Understanding the phenomenology of any string-derived effective theory begins

and ends with the dynamics of the moduli in the theory. We will therefore develop

the theory behind the BGW class of heterotic string models by studying the types of

moduli present in the theory, their stabilization through nonperturbative dynamics,

and their role in transmitting supersymmetry breaking to the Standard Model fields

of the observable sector. In Section 1 we consider theories of a single modulus, whose

vacuum expectation value (vev) determines the gauge coupling of a super Yang-
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Mills (YM) theory. This will lead us into a discussion of gaugino condensation

from multiple directions. Much of Section 1 reviews material that is more fully

treated elsewhere. We conclude the first section with a description of the linear

multiplet treatment of the dilaton and the implementation of Kähler stabilization

in the effective theory. In Section 2 we introduce the interaction of moduli with the

chiral superfields of the MSSM matter sector and discuss the importance of duality

symmetries that relate these moduli to themselves. Section 2 concludes with the

full effective Lagrangian for the BGW class of theories and examines the sorts of

minima that can arise for the effective scalar potential of the moduli. These minima

generically break supersymmetry, and Section 3 is devoted to the understanding of

how supersymmetry breaking is communicated to the other sectors of the theory

– particularly the states of the MSSM. These results are revisited in Section 4

in the presence of anomalous U(1) factors which are generically present in string

constructions. In Section 5 we describe a series of phenomenological topics and how

they can be addressed in the context of the Kähler stabilized heterotic models. In

the final chapter we offer our thoughts on where the model can be improved and how

studies such as ours can be used to construct a meaningful string phenomenology.

1. Moduli and their stabilization

The key to understanding the low-energy manifestation of string physics is under-

standing moduli and their dynamics. The precise definition of a “modulus” some-

times depends on the context, but one property is universal: a modulus is a scalar

field for which there is no potential at the classical level. In other words, there is

no preference for any particular vacuum expectation value (vev) for the scalar field

over any other. Moduli are the sine qua non of string phenomenology: all string the-

ories, when compactified to four dimensions, possess moduli whose vevs determine

the size of certain dimensionless constants in the low-energy Lagrangian. An oper-

ational definition of a 4D string model is therefore a gauge theory with couplings

determined by the scalar components of some set of superfields. It is hard to claim

that a particular theory is “stringy” or “string motivated” if it does not contain

such fields.

Moduli are also in many ways the “engine” that drive any string-derived 4D ef-

fective Lagrangian. The primary focus of any such effective theory is to incorporate

various nonperturbative effects – whether of a field theoretic or string theoretic ori-

gin – to generate a scalar potential for these fields. A good model would be one in

which a nontrivial, finite minimum of this scalar potential exists for all the moduli

considered. But this is merely the beginning. The values of the scalar components

of these moduli at the minimum of their potential will determine a number of im-

portant properties of the theory, such as the gauge and Yukawa couplings. The

auxiliary F -term components of these chiral superfields will generally take nonvan-

ishing vevs at this minimum, implying a breakdown of supersymmetry (SUSY).

The size of these vevs will determine the general scale of supersymmetry break-



Kähler Stabilized, Modular Invariant Heterotic String Models 5

ing, as well as the potential size of any nonzero vacuum energy at the minimum.

Since the moduli couple to matter fields in a well-defined way, the size of the soft

supersymmetry breaking in the observable sector can also be calculated. From here

a wide array of phenomenological properties of the theory can be considered.

What is more, classes of four-dimensional, effective supergravity theories derived

from string constructions can be classified by answering the following questions:

(1) What moduli are present in the low-energy theory?

(2) What symmetries (if any) relate these moduli amongst themselves?

(3) How do these moduli couple to the fields of the observable sector?

A supergravity theory built to describe the low-energy dynamics of weakly-coupled

heterotic string theory on an orbifold will have different answers to these questions

than one built to describe strongly-coupled heterotic string theory on a Calabi-Yau

manifold – and both will be different from the theory describing Type IIA string

theory on an orientifold with D-branes at intersections. This is a powerful and

under-appreciated fact, suggesting that the phenomenology of these theories (driven

as they are by the dynamics of their moduli) will be different – perhaps sufficiently

different to distinguish them through low-energy observations. This connection is

the heart of string phenomenology.

In this work we will be reviewing a class of supergravity models designed to

capture the physics of a large class of heterotic string models at weak coupling.

Most of the time we will be imagining the compactification of this theory on an

orbifold, though much of our discussion is applicable to compactification on more

general manifolds. In particular we will not be considering theories with nonpertur-

bative structures such as D-branes, the positions and orientations of which would

be moduli in the effective low-energy theory. Nor will we be considering moduli

associated with the different ways in which one can define a vector bundle V on

some compact Calabi-Yau space such that it admits a connection which satisfies

the Hermitian Yang-Mills equations. We will rather be concerned with the orbifold

limit of such theories, and therefore in a very simple set of moduli: those associ-

ated with the fields of the ten-dimensional supergravity Lagrangian.a The relevant

bosonic 10D fields are the metric gMN (M,N = 0, . . . , 9), an antisymmetric ten-

sor bMN and the real dilaton scalar φ. These fields must be dimensionally reduced

to an effective four-dimensional theory. It is common to package these degrees of

freedom into chiral superfields. The dimensional reduction of the 10D supergravity

Lagrangian and the field redefinitions required to obtain the chiral superfields of the

4D supergravity theory have been reviewed elsewhere.11,12,13 Here we wish to pro-

vide only those facts that are relevant to our subsequent discussion and necessary

aAdditional twisted sector moduli associated with orbifold or orientifold compactification, such
as Wilson line moduli and “blowing-up” moduli, are captured in our treatment to the extent
that they can be considered as twisted sector gauge-charged matter in the low-energy effective
Lagrangian.
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to establish our conventions with respect to other authors.

The most important modulus, and the one that will be of central focus in the

class of theories considered here, is the dilaton field s whose real part determines

the (universal) gauge coupling. By matching the dimensionally-reduced Yang-Mills

action to the canonical form14 one immediately identifies the gauge coupling as

1

g2
str

= e3σφ−3/4 (1)

where φ is the ten-dimensional dilaton and σ is the real scalar which arises from the

dimensional reduction of the graviton. More specifically, σ is often referred to as the

“breathing mode” associated to the re-scaling gmn → eσgmn, with m,n = 4, . . . , 9

being the coordinates for the compact space. This allows us to set the scale of

the Planck mass. We denote the gauge-coupling as gstr to indicate (a) that it is

understood to be the coupling at the string scale and (b) that it is universal to

all gauge groups in the low energy theory.15 Note that the string scale, which is

inversely related to the string tension via Mstr = 1/
√
α′, is in turn related to the

Planck scale via

Mstr = gstrMpl . (2)

In the effective supergravity theory the dimensional reduction of the antisym-

metric two form bµν (µ, ν = 0, . . . , 3) appears only through its field strength

Hµνρ = ∂[ρbµν]. We may identify (1) as the real part of a scalar field s, and Hµνρ

as its pseudoscalar partner a provided we make the duality transformation

ǫµνρη∂
ηa = φ−3/2e6σHµνρ (3)

The field a is the so-called “model-independent” axion field.

In orbifold compactifications in which the six-dimensional compact space is fac-

torizable into three two-torii it is possible to define the Kähler and complex struc-

ture moduli in terms of the elements of gmn and bmn (with m,n = 1, 2) for each of

three internal torii. In particular, for the important case of the Kähler moduli we

have in this limit the definition

tI = φ3/4
√

det(gI
mn) +

ibI12√
2

= (RI)2 +
ibI12√

2
(4)

where I = 1, 2, 3 labels the complex plane associated with each torus and RI

is radius of the compactified subspace in string units. The final equality in (4)

is strictly true only in the vacuum. We therefore can identify Mcomp ≡ 1/RI =〈
Re tI

〉−1/2
Mstr.

1.1. Basics of gaugino condensation

Past developments in string phenomenology have by now suggested a number of

mechanisms which can be employed to generate potentials for moduli at the non-

perturbative level. Yet one source of these effects stands out among the others for its
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ubiquity and generality: that of gaugino condensation for some non-Abelian gauge

group. This phenomenon is, in principle, a purely field-theoretic effect and can be

considered without regard to some underlying string theory construction. Before

discussing moduli dynamics it is therefore instructive to consider the physics of

gaugino condensation in a general manner. The subject has a long history in the

literature and we here intend only to motivate the effective Lagrangian approach

to appear in Section 2. More detailed reviews can be found elsewhere.16,17

1.1.1. Strong coupling and confinement

Non-Abelian gauge groups with weak coupling in some high-energy regime are

known to reach strong coupling at low-energies through renormalization group (RG)

effects, provided the beta-function coefficient for the gauge coupling takes the cor-

rect sign. The sign itself is determined by conventions. We will choose conventions

such that the RG equation for the gauge couplings is given by

∂ga(µ)

∂t
= −3ba

2
g3

a(µ) , (5)

with

ba =
1

8π2

(
Ca − 1

3

∑

i

Ci
a

)
. (6)

In (6) Ca and Ci
a are the quadratic Casimir operators for the gauge group Ga in

the adjoint representation and in the representation of the matter fields Zi charged

under that group, respectively. Note that these conventions imply that a group Ga

with ba > 0 will flow to strong coupling in the infrared.b To estimate the energy

scale at which strong coupling occurs one can simply solve the RG equation for the

gauge coupling. Using the one loop beta-function, the answer is given by

Λa = µe−1/3bag2
a(µ) . (7)

This expression involves the renormalization scale µ. In our thought experiment we

imagine this scale being some high-energy scale where string theory sets the 4D

effective Lagrangian; thus it is natural to take µ ≃Mpl and g2
a(µ) = gstr.

What happens physically at this scale? Our experience with QCD suggests that

confinement can occur. This can be characterized by nonvanishing vevs for certain

composite objects made up of fermions charged under the strong group. In a pure

super-Yang-Mills (SYM) theory (a theory with only gauge supermultiplets and no

gauge-charged chiral superfields) the only candidate for such ‘condensates’ are the

fermionic partners of the gauge fields – the gauginos. Thus one might naively expect

bThe choice of normalization in (5) and (6) was made for future convenience when constructing
the effective superspace Lagrangian. To recover the ‘standard’ conventions of (for example) Martin
and Vaughn18 one must take ba → −(2/3)ba|MV.
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a nonvanishing 〈λλ〉 to develop at or near the scale Λ. By dimensional analysis we

expect

〈λλ〉 ∼ Λ3 (8)

and using (7) this would seem to suggest

〈λλ〉 ∼M3
pl
e−1/bag2

a(Mpl) . (9)

This picture is modified in a number of ways when gauge-charged matter is

present. For starters, the beta-function itself changes to reflect the presence of these

states in the relevant loop diagrams. More significantly we might expect the chiral

matter to confine and form composite operators. We may treat these as dynamical

objects or assume them to be very massive ‘matter condensates.’ Modifications

to (9) are known and have been computed by explicit instanton calculations and/or

by arguments of anomaly matching and holomorphy.19,20,21,22 In global superspace

a large number of non-Abelian gauge theories, with and without gauge-charged

matter, are known to confine and the analogs to (9) are known.23,24,25,26 We will

discuss the presence of matter when we come to the effective Lagrangian approach

in Section 1.2 below. For the remainder of this section we return to the pure SYM

theory to make some additional remarks.

Why do we expect such an object to break supersymmetry? Consider the equa-

tion of motion for the auxiliary field of an arbitrary chiral superfield in supergravityc

F
̄
= −eK/2Kī(Wi +KiW ) − 1

4
Kī ∂fa

∂ϕi
(λaλa) , (10)

where Wi = ∂W/∂ϕi, Kī = ∂2K/∂ϕi∂ϕ
̄ is the Kähler metric and we have set the

reduced Planck mass mpl to unity, where mpl = 1/
√

8πG = 2.44 × 1018 GeV. The

function fa is the gauge kinetic function which appears in the Yang-Mills kinetic

part of the action

LYM =
1

8

∑

a

∫
d4θ

E

R
fa(WαWα)a + h.c. . (11)

In this case we see that provided the gauge kinetic function is field-dependent there

will generally be a breakdown of supersymmetry via 〈F 〉 6= 0 should some bilinear

λaλa acquire a vacuum expectation value.27,28,29,30

1.1.2. Gauge coupling as a dynamical field

In order to proceed further and discuss moduli stabilization we must be somewhat

more specific. Therefore, consider a case in which the gauge coupling is determined

cHere and throughout we use Kähler U(1) superspace when discussing supergravity as it is the most
convenient for string-derived supergravity Lagrangians.31,32,33 Most intuition from the formalism
of Wess & Bagger34 continues to hold with only a few modifications, particularly in the way
expressions are written in superspace notation. For those unfamiliar with Kähler U(1) superspace
we have provided some introductory material on the formalism in Appendix A.
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by the vev for the lowest component of some chiral superfield. In anticipation of

weakly coupled heterotic strings we will refer to this chiral superfield S as the dilaton

from (1). In the language of superspace effective Lagrangians, this is equivalent to

the statement that the gauge kinetic function fa in the expression (11) is simply

given by fa = S for all gauge groups Ga. Note that the operator SWαWα is formally

of mass dimension five, so there must be some scale Λuv which enters (11) to restore

the canonical mass dimension for LYM. The vev of the lowest component s = S|θ=0

determines the (universal) gauge coupling constant g at this scale Λuv via the

relation

1

g2
a

= ka
〈Re s〉
Λuv

. (12)

The integer ka is the affine level of the gauge group Ga, as determined by the

conformal field theory of the underlying string construction. For most purposes we

will take the simplest case of ka = 1. In what follows we will set Λuv = mpl = 1

and consider the vevs of all moduli be to be given in units of this scale.

Making the naive replacement suggested by (12) into (9) leads to the hypothesis

that gaugino condensation will generically generate a potential for the superfield S

(or at least its real part). Let us therefore take the superpotential generated by the

gaugino condensation to be (for ka = 1)

Wnp(S) = e−
S
ba . (13)

Note that in writing (9) in this way we have essentially integrated the gaugino

condensates out of the theory, replacing them with a (holomorphic) function of

the moduli. To compute the scalar potential for the field S we may use the result

familiar from supergravity

V = KīF
iF

̄ − 1

3
MM , (14)

where F i is the auxiliary field associated with the chiral superfield ϕi and M is

the auxiliary field of supergravity. The auxiliary fields can be identified by their

equations of motion

F i = −eK/2Kī
(
W ̄ +K̄W

)
, M = −3eK/2W (15)

with the gravitino mass given by m3/2 = − 1
3

〈
M
〉
. The potential (14) can be

writtend

V (s, s̄) = Kss̄|FS |2 − 3eK |W |2 = eKKss̄|Ws +KsW |2 − 3eK |W |2. (16)

At the classical level in string theory, the Kähler potential for the field S has

the form

K = − ln(S + S) , (17)

dNote that we are here assuming that the superpotential W depends only on the chiral dilaton and
not on any other modulus. The case of more general W (S, T ) will be considered in Section 2.1.2
below.
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Fig. 1. Plot of dilaton potential V(s + s̄) for the superpotential Wnp(S) = e
−

S

ba with

ba = 5/8π2. The shape of the potential as a function of sr = (s + s̄) = 2 Re s is given with the
height of the potential in arbitrary units (mpl = 1). The asymptotic behavior as sr → ∞ is the
so-called dilaton “runaway” problem.

and the nonperturbatively generated superpotential in (13) gives Ws = −(1/ba)W .

The resulting dilaton potential (16) is plotted in Figure 1 for ba = 5/8π2, as would

be the case for condensation of pure SU(5) Yang-Mills fields. In the limit Re s→ 0

(which corresponds to strong gauge coupling) the potential is unbounded from

below. There is an extremum that depends weakly on the precise value of ba chosen

but is generally at a value of Re s where α = g2/4π ≃ 1. Finally there is the

‘runaway’ solution where Re s → ∞ or g2 → 0. In this limit supersymmetry is

restored as both the superpotential and its covariant derivatives vanish.

The potential determined by (13) and (17) is incapable of breaking supersym-

metry and providing a realistic minimum for the dilaton. A number of mechanisms

were quickly suggested to correct this behavior, and we will address some of them

in subsequent sections. For now we continue in the spirit of simplicity (i.e. one-

modulus models) and here consider the case of multiple condensates.35,36 A single,

simple gauge group G in the hidden sector was motivated by some of the earliest

Calabi-Yau constructions where the hidden sector was an entire factor of E8.
37,38

In general, however, (and particularly for orbifold compactifications) we expect a

hidden sector gauge group that is given by a product of simple groups: G =
∏

a Ga,

or perhaps more generally

Ghidden =

n∏

a=1

Ga ⊗ U(1)m . (18)

Some subset of these Ga will be asymptotically free and can therefore form a gaugino

condensate. Taking the simplest case of just two gaugino condensates in the hidden
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Fig. 2. Plot of dilaton potential V(s + s̄) for the superpotential of (19). The shape of
the potential as a function of sr = (s + s̄) = 2Re s is given with the height of the potential in
arbitrary units (mpl = 1). Values of the parameter set are given in the text below.

sector we would expect a superpotential of the form35,39

W (S) = Λ3
[
d1e

−k1S/b1 + d2e
−k2S/b2

]
. (19)

Here b1 and b2 are the beta-function coefficients, defined by (6), for the two con-

densing groups G1 and G2. The quantities d1 and d2 parameterize the presence of

possible matter in the hidden sector, while the parameters k1 and k2 might rep-

resent differing affine-level for the gauge groups. For dilaton stabilization with a

realistic minimum to occur, we must require that the scalar potential V (S) given

in (16) give rise to a minimum such that 〈s+ s̄〉 /2 = 1/g2
str

≃ 2 while generating

a gravitino mass m3/2 =
〈
eK/2W

〉
of O(1 TeV). Each of the parameters in the set

{b1, b2, d1, d2, k1, k2} are not continuously variable, but depend upon particulars

of the compactification in a calculable way. Superpotentials of the form (19) are

often referred to as “racetrack” models in that two exponential functions must be

balanced against one another in a delicate way to achieve the desired minimum.

If we take the simplest possible case40,41,42 in which da = −ba/6e and take a

hidden sector comprising of G1 = SU(7) with 8 7 + 7̄’s and G2 = SU(8) with 15

8 + 8̄’s then a solution exists for k1 = 2 and k2 = 1. The balancing of two SU(N)

groups with similar beta-function coefficients is a common feature of solutions in the

racetrack scenario. The resulting scalar potential is plotted in Figure 2 above. The

asymptotic runaway behavior as sr → ∞ is still present, as is the unbounded from

below direction near the origin. But now a nontrivial minimum develops for the real

part of the dilaton scalar. This is a major improvement over the single condensate

case, though there are two properties that make this minimum unrealistic. First, the

value of the dilaton field at this minimum suggests far too strong a gauge coupling
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g2
str

≃ 30. Second, the minimum does not occur with vanishing value of 〈V (Re s)〉
but rather with a large negative value.

The former problem of the dilaton vev can be rectified by a number of mech-

anisms. The relationship between the beta-function parameters ba and the coeffi-

cients da can be generalized. For example, one might consider the effect of threshold

corrections on the beta-functions for the couplings of groups G1 and G2 (as well as

on the scales Λ which appear in equation 19). These effects might arise from in-

tegrating out heavy vector-like matter charged under those groups, with masses

above the condensation scale (such as states charged under some anomalous U(1)

factor).36 If the hidden sector matter is to be integrated out below the scale of

gaugino condensation then a nontrivial da is generated for each condensing group

whose form depends on whether the matter is vector-like in nature43 or only forms

condensates of dimension three or higher.44 Another solution (often invoked in con-

junction with the above) is to allow the nonperturbative superpotential to depend

on more than one modulus – in particular, the Kähler modulus of (4).36,45,46,43 Such

a dependence is required in modular invariant treatments of effective Lagrangians

from heterotic string theory. We will discuss this further in Section 2.

The success of multi-condensate models in achieving supersymmetry breaking

with realistic values of the gauge coupling have made them the preferred starting-

point for most phenomenological treatments of string constructions. Yet even in

the multi-modulus (and modular invariant) treatments they suffer from a common

problem: the minimum of the potential continues to imply negative vacuum energy

(i.e. the solution is one with anti-de Sitter spacetime). This is a phenomenological

disaster that requires the invocation of some additional physics that enters to “res-

cue” the theory and set the vacuum energy to zero (or very nearly zero).e Today

the most effective and robust such method is the inclusion of flux – that is, vac-

uum expectation values for the field strengths of fields from the Ramond-Ramond

sector of the string theory.47 But such mechanisms do not readily present them-

selves in the weakly coupled heterotic string context. We are thus left to consider

other field-theoretic and/or string-theoretic effects which must be included in the

effective Lagrangian to allow for a realistic minimum. For the class of models being

discussed in this work the mechanism will be that of Kähler stabilization, and it will

be the focus of Section 1.3 below. But before we can consider the implementation of

Kähler stabilization we must discuss the effective Lagrangian approach to gaugino

condensation.

eIt might be hoped that quantum corrections to the vacuum energy of the theory might conspire
to “lift” the negative minimum to a positive or vanishing one, without invoking any additional
fields or interactions. This is not impossible, but we argue that such corrections are generally
insufficient to rectify the problem, and may even make it worse.48
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1.2. Condensates as effective operators

The treatment of condensates in supergravity is greatly simplified by using an

effective operator approach.49,29 The starting point for our analysis is the definition

of the composite field operator Ua which represents a Ga-charged gauge condensate

chiral superfield

Ua ≃Wα
a W

a
α . (20)

Note that the lowest component of ua = Ua|θ=θ̄=0 involves the gaugino bilinear

λaλa. We wish to write an effective Lagrangian describing the dynamics of this new

chiral superfield such that the behavior of the Lagrangian under symmetry transfor-

mation is matched by the behavior of the underlying supersymmetric gauge theory

(with unconfined gauginos). For global SUSY the resulting effective Lagrangian (for

a single condensate) is that of Veneziano and Yankielowicz (VY)49

Leff =

∫
d4θ(UU †)1/3 − 1

4

[∫
d2θ

(
b′U ln

U

µ3
+

1

g2
U

)
+ h.c.

]
. (21)

Here µ is the renormalization group invariant scale of the condensing group. The

logarithmic part of the second term in (21) can be combined with the standard

Yang-Mills term in (11) and is represented by the following superpotential expres-

sion50,51,52

W (U, S)vy =
1

4
U
[
S + b′U ln(U/µ3)

]
, (22)

where b′ is a constant coefficient which we will determine presently. If there are

multiple condensates labeled by the index a as in (20), then the final term in (22)

will generally involve a different coefficient b′a for each condensate Ua.

To the Lagrangian in (21) we wish to add the possibility of matter charged under

the condensing group to obtain the Veneziano, Yankielowicz and Taylor (VYT)

Lagrangian.49,19,53 From our experience in QCD we generally expect states charged

under the strong group to experience confinement and form composites. We will

represent these by the composite field operators

Πα
a ≃

∏

i

(
Φ

(a)
i

)n
α,(a)
i

, (23)

where the product involves only those fields Φ
(a)
i charged under the confined group

Ga. In (23) the label α is a species index for the matter condensates, each of which

may consist of different component fields labeled by the integers n
α,(a)
i . Note that

the canonical mass dimension of this operator Πα
a is given by

dim (Πα
a ) ≡ dα

a =
∑

i

n
α,(a)
i (24)

The generalization to supergravity40,54 of the VYT effective action (that is, the

generalization of (21) to include matter in Kähler U(1) superspace) has the following
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general form

LVYT =
1

8

∫
d4θ

E

R

∑

a

Ua

[
b′a ln(e−K/2Ua) +

∑

α

bαa ln Πα
a

]
+ h.c. , (25)

where there are now two separate coefficients b′a and bαa which must be determined

for each condensing group Ga. These are obtained by matching the anomalies of

the effective theory to those of the underlying theory. The Lagrangian (25) has the

correct anomaly structure under Kähler U(1), R-symmetry, conformal transforma-

tions, and modular (T-duality) transformations provided the conditions

b′a =
1

8π2

(
Ca −

∑

i

Ci
a

)
, bαa =

∑

i∈α

Ci
a

4π2dα
a

, (26)

are satisfied. The composite chiral superfields Πα
a are invariant under the nonanoma-

lous symmetries, and may be used to construct an invariant superpotential.19,55

Provided there are no invariant chiral fields of dimension two, and no additional

global symmetries (such as chiral flavor symmetries), the dynamical degrees of free-

dom associated with the composite fields (20) and (23) acquire masses56 larger

than the condensation scale Λa, and may be integrated out. This results in an ef-

fective theory constructed as described in (25) with the composite fields taken to

be nonpropagating; that is, they do not appear in the Kähler potential.

We note that the conditions (26) are not a unique solution to the set of anomaly

constraints. However they are the most straightforward solution, intuitively plausi-

ble, and hold in the presence of additional anomalous symmetries, since the weights

of the condensates Π are just the products of the weights of their constituents. As an

explicit example of a fully constrained model, consider the VYT action for SU(Nc)

with chiral flavor symmetry. We have N “quark” and N “anti-quark” chiral su-

permultiplets QA and Qc
A, respectively. We take the quark condensates to be the

matrix-valued “meson” superfield ΠA
B = QAQc

B. We do not assume a priori that

these are static fields. If Ga = SU(Nc) ≡ GQ we take

LQ
VYT =

1

8

∫
d4θ

E

R
UQ

[
b′Q ln(e−K/2UQ) + bαQ ln(detΠ)

]
+ h.c. , (27)

where here the form of the matter condensate is dictated by invariance under flavor

SU(N)L ⊗ SU(N)R. For the elementary fields we have CQ = Nc, C
i
Q = 1

2 and∑
iC

i
Q = N . Under Kähler U(1) R-symmetry, anomaly matching requires

b′Q =
1

8π2
(Nc −N) , (28)

and under the conformal transformation

λa → e3σ/2λa Φi → eσΦi

Ua → e3σUa Πα
a → edα

a σΠα
a

(29)

with Π → e2σΠ, we require

3b′Q + 2NbαQ =
1

8π2
(3Nc −N) = 3bQ, (30)
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where bQ is the β-function coefficient defined by (6). Putting these together gives (28)

and

bαQ =
1

8π2
, bQ = b′Q +

2N

3
bαQ , (31)

in agreement with the general result (26) for dα
Q = 2N and πα

Q = detΠ. It is easy

to see that the anomaly matching condition

2NbαQ =
∑

i

Ci
Q

4π2
(32)

under chiral U(1) transformations Q → eiβQ, Qc → eiβQc is also satisfied by (28)

and (31).f

It is instructive to compare the effective theory defined by (25) with results57,58

based on holomorphy of the superpotential by going to the rigid SUSY limit, and

neglecting the moduli and the dilaton; s→ g−2
0 = constant. Then the superpotential

reduces to the standard VYT one:

W (UQ) =
1

4
UQ

[
g−2
0 + b′Q ln(UQ) + bαQ ln(detΠ)

]
, (33)

which is the analog of (22). Keeping UQ static and imposing the equation of motion

for the auxiliary field FQ gives the potential

−V = Tr

[
F̄πK′′Fπ +

{
Fπ

(
M +

1

4
bαQuQΠ−1

)
+ h.c.

}]
,

uQ = e−1

(
Λ3Nc−N

Q

detΠ

)1/(Nc−N)

(34)

where K′′ is the (tensor-valued) Kähler metric for Π. The potential (34) is derivable

from the following superpotential for the dynamical superfield Π

WΠ = Tr(MΠ) − (Nc −N)

32π2e

(
Λ3Nc−N

Q

(detΠ)

)1/(Nc−N)

, (35)

which, up to a factorg −2/e, is the superpotential found by Davis et al.57

1.3. Kähler stabilization and the linear multiplet

To adopt the form of (22) as an effective superpotential term requires that the

gauge kinetic function be written in terms of a linear combination of holomorphic

objects – that is, of chiral superfields. Most treatments of gaugino condensation

fThough we have reserved the issue of modular invariance for the next section, we remark here
that it is also very easy to see that should Q, Qc have nontrivial modular weights under T-duality
the modular anomaly matching condition is also satisfied by (28) and (31).
gThe factor e comes from the fact that we take the derivative of

R

U ln U , while Davis et al. start
with

R

< λλ > ln Λ and determine < λλ > from threshold matching.57 The minus sign comes
from the convention of Ref. 33: u ∼ W αWα| = −λλ.
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utilize the formalism of the previous section – namely the description of dilaton-

like objects as chiral superfields. This has the convenience of familiarity, but almost

all extensions of the theory beyond that presented in Sections 1.1 and 1.2 quickly

reveal the limitations of the chiral superfield treatment. In this section we will

consider an alternative and dual formulation of the Yang-Mills action in terms of

real dilatonic superfields. This will prove to be convenient in implementing the

Kähler stabilization mechanism for solving the vacuum energy problem described

in Section 1.1.

1.3.1. The linear multiplet

It is worth recalling the properties of the fundamental degrees of freedom obtained

from direct dimensional reduction of the massless string spectrum. For each “dila-

ton” (that is, for each field whose vev determines a gauge coupling) the 4D massless

modes are a real scalar ℓ, an antisymmetric two-index tensor bµν and a (Majorana)

Weyl fermion χℓ. These are precisely the degrees of freedom of the linear multiplet.59

In particular there is no need to perform the duality transformation (3) in order to

generate a pseudoscalar “partner” for the real dilaton. This is particularly important

when one considers higher-genus corrections to the effective Lagrangian, where the

duality relation (3) is replaced by a much less straightforward field identification.60

Note also the absence of an auxiliary field in the massless spectrum for this multi-

plet.

A linear multiplet L̂ is essentially a special case of a real vector superfield defined

by the requirement61,62,63,64

−(DαDα − 8R†)L̂ = 0, −(Dα̇Dα̇ − 8R)L̂ = 0 . (36)

The requirement that the chiral projection of L̂ vanish already ensures that the

vector component vµ of the multiplet is Hodge-dual to the field strength of a two-

index antisymmetric tensor – precisely the field that appears in (3).64 In other

words, the definition (36) automatically enforces the Bianchi identity

∂µvµ = 0 (37)

for the vector component of L̂, which we identify as

vµ = ǫµνρσ∂
νbρσ =

1

2
ǫµνρσH

νρσ . (38)

The lowest component ℓ of the superfield L̂ is then the dilaton and the relation (12)

is replaced by

g2
str

2
= 〈ℓ〉 . (39)

This quantity represents the string loop expansion parameter. Therefore string-

theory information from higher loops is more naturally encoded in terms of this
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set of component fields. At the leading order the chiral and linear formalisms are

related by the simple superfield identification

L̂ =
1

S + S
(40)

though this identification fails to be satisfactory at higher loop level.

The antisymmetric tensor field of superstring theories undergoes Yang-Mills

gauge transformations, which implies that the superfield L̂ which contains this de-

gree of freedom is not gauge invariant. It is possible to define a modified linear mul-

tiplet L which recovers gauge invariance by introducing Yang-Mills Chern-Simons

forms to the definition in (36).63 We define the YM Chern-Simons form as

Ωµνρ = Aa
[µFνρ] a − 1

3
fabcA

a
µA

b
νA

c
ρ , (41)

where fabc are the structure constants of the group, and then promote this to a real

superfield Ω. The new field L will obey the modified linearity conditions

−(Dα̇Dα̇ − 8R)L = (Dα̇Dα̇ − 8R)Ω =
∑

a

(WαWα)a,

−(DαDα − 8R†)L = (DαDα − 8R†)Ω =
∑

a

(W α̇W
α̇
)a . (42)

Neither L nor Ω are gauge-invariant individually, but the combination L̂ = L + Ω

now is.h For those subgroups Ga′ which experience confinement it is natural to

identify the chiral projection of the modified linear multiplet as the chiral superfield

Ua′ in (20). We therefore have

−(Dα̇Dα̇ − 8R)L =
∑

a

(WαWα)a +
∑

a′

Ua′ ,

−(DαDα − 8R†)L =
∑

a

(W α̇W
α̇
)a +

∑

a′

Ua′ . (43)

We will see below that this identification is crucial to a correct implementation of

certain Bianchi identities in the Yang-Mills sector of the theory.

The generic Lagrangian describing the coupling of the modified linear multiplet

to supergravity and chiral superfields, in the presence of Yang-Mills Chern-Simons

superforms, is63,32,65

K = k(L) +K(Φ,Φ), L = −3

∫
d4θ E F (Φ,Φ, L) (44)

where the quantity K(Φ,Φ) represents the contribution of chiral superfields (mat-

ter and/or additional moduli fields) to the Kähler potential. We will deal with

chiral matter more thoroughly in Section 2; in the discussion here they will play

hThe choice of signs in the relations (42) is one of conventions and several exist in the literature.
For example, the conventions used here are those of Gaillard and Taylor.65 They differ by the
presence of the minus sign on the first terms from those of earlier work.63,32
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only a trivial role. Note that the Kähler potential does not appear explicitly in

the superspace Lagrangian, but rather implicitly through the supervierbein E. The

component expansion of (44) contains the kinetic terms for the supergravity multi-

plet as well as the Yang-Mills fields and the linear multiplet itself. The two functions

k(L) and F (L) are not entirely arbitrary; they are constrained by the requirement

that the Einstein-Hilbert term in the component expansion of (44) have canonical

normalization. Under this constraint k(L) and F (L) are related to each other by

the following first-order differential equation63,32

F − L
∂F

∂L
= 1 − 1

3
L
∂k

∂L
. (45)

The general solution to (45) reads32

F (Φ,Φ, L) = 1 +
1

3
LV (Φ,Φ) +

1

3
L

∫
dL

L

∂k(L)

∂L
. (46)

Once the functional form of k(L) is specified the last term in (46) is fixed. This

leaves only the second term for a nontrivial interaction between the modified linear

multiplet and matter within the function F (Φ,Φ, L). This term is a form of “inte-

gration constant” for the differential equation in (45). Such a term will play a very

important role in the implementation of the Green-Schwarz mechanism66 and the

inclusion of nonholomorphic threshold corrections to gauge couplings in Section 2

below. Its natural emergence here is one of the benefits of using the linear multiplet

in string-derived supergravity models. At tree level we expect from (40) that the

Kähler potential for the linear dilaton should be simply k(L) = lnL. This implies

the V = 0 solution to (46) is a constant F (L) = 2/3, and thus

Lkin = −2

∫
d4θ E . (47)

For the general form (44) we must also generalize the duality relationship in (40).

Consider the Lagrangian32,67

Llin = −3

∫
d4θ E

[
F (Φ,Φ, L) +

1

3
(L+ Ω)(S + S)

]
(48)

where L is now an unconstrained superfield. After eliminating S by using its classical

equation of motion one obtains (44). By varying with respect to L and demanding

canonical Einstein term we arrive at (46) and the new duality relation

F (Φ,Φ, L) +
1

3
L(S + S) = 1 . (49)

For the simple tree-level case with F = 2/3 + LV/3 we have

L =
1

(S + S + V )
(50)

and we once again recover (40) in the limit of vanishing integration constant.
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With the introduction of Yang-Mills Chern-Simons forms, the Bianchi identity

satisfied by the vector component of the modified linear multiplet is no longer (37)

but is instead51,68

∂µvµ =
1

8

∗
Φ (51)

where ∗Φ is related to the field strength of a rank-3 antisymmetric tensor field Γνρσ

∗Φ =
1

3!
ǫµνρσ∂

µΓνρσ . (52)

The expression in (52) is the analog to the axionic duality relation in (3).i The

three-form supermultiplet can be described in flat superspace by a chiral superfield

Y and anti-chiral superfield Y such that69

D2Y −D
2
Y =

8i

3
ǫµνρσΣµνρσ , (53)

where Σµνρσ is the gauge-invariant field strength of the rank-three gauge potential

superfield Γνρσ. Applying (53) to the specific case of our modified linear multiplet

in curved superspace we find the constraint

(DαDα − 24R†)U − (Dα̇Dα̇ − 24R)U = total derivative

=
i

3
ǫµνρσ∂

µΓνρσ (54)

= 2i∗Φ

with a similar constraint for the unconfined YM fields via the replacement U →
WαWα. Indeed, the composite operatorWαWα can be interpreted as the degrees of

freedom of the three-form field strength.69,68 The general solution to the constraint

equation (54) is a field U which is identified with the chiral projection of a real

superfield – precisely as in (43).

The traditional chiral formulation of gaugino condensation is incorrect in that it

treats the interpolating field U = eK/2H3 with H3 = WαWα as an ordinary chiral

superfield of Kähler chiral weight w = 2. But this is inconsistent with (54).70,71,51,52

In the general formulation of duality transformations, couplings of the dilaton to

matter entail duality invariance of the corresponding terms in the Lagrangian, as

opposed to their couplings to gauge fields, which are only an invariance of the

equations of motion.52 One must either apply (54) religiously everywhere, or begin

by using the modified linear multiplet in the first place.

This is not a purely academic concern: failure to properly incorporate the con-

strained Yang-Mills geometry inherited from the underlying string dynamics can

iThe presence of additional terms in the new Bianchi identity (51) implies that the would-be
classical shift symmetry (i.e. a Peccei-Quinn type symmetry) enjoyed by the model-dependent
axion of the dilaton multiplet has been broken to a restricted class of shifts by nonperturbative
effects.
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have demonstrable effects on the low-energy phenomenology inferred from the com-

ponent Lagrangian. For example, in the present formalism the condensate super-

fields Ua of (20) are introduced as static chiral superfields. Their highest components

FUa
, defined by

FUa
= −1

4
DαDαUa|θ=θ̄=0 ≡ −1

4
D2Ua ,

FUa
= −1

4
Dα̇Dα̇Ua|θ=θ̄=0 ≡ −1

4
D2
Ua , (55)

therefore appear only linearly in the component Lagrangian. One might believe

that they can thus be removed from the theory by solving their equations of motion

FUa
= FUa

= 0. However a subtlety arises in deriving the corresponding equations

of motion for these auxiliary fields as a result of (54),72,73 for which we must requirej

−1

4

(
D2Ua −D2

Ua

)
= FUa

− FUa
= 4i∇µva

µ + uaM − uaM . (57)

The first term is the “total derivative” of (54), while the last two terms arise from the

lowest components of the superfield terms 24R†Ua − 24RUa. At a supersymmetry-

breaking minimum of the scalar potential we generally expect nonvanishing vevs for

both the condensates (〈ua〉 ∼ 〈λaλa〉) and the auxiliary field of supergravity (〈M〉 ∼
m3/2, see equation 15). Therefore (57) is a nontrivial constraint that can affect the

soft supersymmetry breaking of the observable sector as well as the physics of the

axion sector (associated with va
µ).60 When the condensate field Ua is treated as an

ordinary chiral superfield these last two terms do not arise automatically (as they

do in the linear multiplet treatment) but must be included in the effective theory

by hand. These terms also can be shown to vanish in the Mpl → ∞ limit of flat

superspace, indicating the importance of a proper supergravity treatment for an

accurate phenomenology.

1.3.2. Kähler stabilization

In the previous subsection we have argued that it is the linear multiplet formulation

which hews most closely to the underlying string theory. The fundamental degrees of

freedom of the dilaton multiplet, particularly in the presence of Yang-Mills Chern-

Simons forms, are easily incorporated into its structure. Kähler U(1) superspace

then provides a framework for naturally including this constrained Yang-Mills ge-

ometry into four-dimensional supergravity. In Section 2.2 we will also see how the

integration constant associated with (46) allows a beautiful implementation of the

jOne way to ensure this constraint is to first rewrite FUa as

FUa =
1

2

“

FUa + F Ua

”

+ 2i∇µva
µ +

1

2

`

uaM − ūaM
´

, (56)

(and the conjugate expression for FUa
), and then vary the Lagrangian with respect to the un-

constrained combination FUa + FUa
.
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Green-Schwarz mechanism of anomaly cancelation. Before introducing that com-

plication, however, we wish to recast the familiar language of gaugino condensation

from Sections 1.1 and 1.2 in terms of our less familiar linear multiplet. Along the

way we will consider possible nonperturbative corrections to the effective action

which will allow us to achieve moduli stabilization.

On general grounds we expect nonperturbative effects to alter the form of any

and all functions which determine the low-energy effective supergravity Lagrangian.

These may be of field-theoretic or string-theoretic origin. An example is the gaugino

condensation of the previous sections, which we imagine to be a nonperturbative

effect from field theory which generates corrections to the holomorphic superpoten-

tial for the moduli fields. It is certainly not unreasonable to believe that instanton

effects – whether of the world-sheet or of target space – will correct the Kähler

potential as well. Indeed, such stringy effects were conjectured some time ago by

Shenker74 and have since been explicitly demonstrated to exist in certain string

contexts.75,76,77

We expect corrections to the Kähler potential to involve the confinement scale

Λa of (7), and on dimensional grounds we expect corrections of field-theoretic origin

which scale like

L−me−n/6baL/Mn−2
pl

(58)

where n ≥ 2 and m ≥ 0.78,71,60 The simplest example of such an effect would be to

consider the leading-order nonperturbative contribution (n = 2 and m = 0) to the

Kähler potential

f(L) = Ae− 1/3bL, (59)

where A is a constant to be determined by the nonperturbative dynamics and b is

some effective beta-function coefficient. Another possibility is to consider instan-

ton contributions from the string world-sheet, in which the function f (L) derived

from (58) is slightly modified to74

f(L) =
∑

n

An(
√
L)−ne−B/

√
L . (60)

It is an important feature of (60) that these string instanton effects scale like e−1/g

(when we use ℓ ∼ g2) and are thus stronger than analogous nonperturbative effects

in field theory which have the form e−1/g2

. Thus they can be of significance even

in cases where the effective four-dimensional gauge coupling at the string scale is

weak.78

The corrections described above are, strictly speaking, not corrections to the

Kähler potential of the dilaton but to its action, which is best investigated in

component form. While these corrections can be written in terms of modifications

to the effective four-dimensional Kähler potential, it is simpler to implement the

changes directly at the superfield level by modifying the kinetic energy part of the

superspace Lagrangian. We thus follow the form of (44) and introduce two functions
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of the effective superfield L which parameterize these nonperturbative corrections

arising from instanton effects as follows

LKE =

∫
d4θ E [−2 + f(L)] , k(L) = ln L+ g(L), (61)

where (45) implies

L
dg(L)

dL
= −Ldf(L)

dL
+ f(L). (62)

In addition, we wish to obtain the classical limit f = g = 0 at weak coupling, so we

must demand a further boundary condition at vanishing coupling

g(L = 0) = 0 and f(L = 0) = 0. (63)

In the presence of these nonperturbative effects the relationship between the dilaton

and the effective field theory gauge coupling is modified from the relation in (39)

in a manner dictated by the duality relation in (49)

g2
str

2
=

〈
ℓ

1 + f (ℓ)

〉
. (64)

We continue to use the form of (25) to describe gaugino condensation. For

simplicity we will work in this section only with a single gaugino condensate. We

will thus take the hidden sector to be a pure Yang-Mills theory with no chiral

matter. Then we have

Lvy =
b

8

∫
d4θ

E

R
U ln(e−K/2U/µ3) + h.c. , (65)

and from (26) we have b = C/8π2 with C being the quadratic Casimir operator for

the condensing group in the adjoint representation. Using superspace integration

by parts, and the property (43), it is possible to write the complete Lagrangian for

this simple system as

Leff =

∫
d4θ E {−2 + f(L) + bL ln(e−KUU/µ6) } . (66)

The method for obtaining the component field Lagrangian from D-density ex-

pressions in Kähler U(1) superspace is outlined in the Appendix. Recalling the

discussion surrounding the auxiliary fields FU and FU in (57), we are careful to

solve for the equations of motion for the combination (FU + FU ) from which we

obtain

f + 1 + bℓ ln(e−kūu/µ6) + 2bℓ = 0 , (67)

where k = k(ℓ) is the dilaton Kähler potential in (61). This equation is easily solved

to provide an expression for the magnitude of the gaugino condensate

ūu =
1

e2
ℓµ6eg − (f+1)/bℓ , (68)
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where the basic form of (9) is recovered in the limit f(ℓ) = g(ℓ) = 0, as it should.

The equation of motion for the supergravity auxiliary field gives

M =
3

4
bu ; M =

3

4
bu , (69)

from which the gravitino mass can be computed. Eliminating all auxiliary fields via

their equations of motion generates the scalar potential for the dilaton

V (ℓ) =
1

16ℓ2

[(
1 + ℓ

dg

dℓ

)
(1 + bℓ)2 − 3b2ℓ2

]
uu,

=
1

16e2ℓ

[(
1 + ℓ

dg

dℓ

)
(1 + bℓ)2 − 3b2ℓ2

]
µ6eg − (f+1)/bℓ (70)

which depends only on the dilaton ℓ. In the case of multiple condensates each com-

bination (FUa
+ FUa

) gives rise to an equation (67) for the individual condensates

ua, and the solutions (68), (69) and (70) are generalized to

ūaua =
1

e2
ℓµ6eg − (f+1)/baℓ , (71)

m3/2 =
1

3
〈|M |〉 =

1

4

〈∣∣∣∣∣
∑

a

baua

∣∣∣∣∣

〉
, (72)

V (ℓ) =
1

16ℓ2

(
1 + ℓ

dg

dℓ

) ∣∣∣∣∣
∑

a

(1 + baℓ)ua

∣∣∣∣∣

2

− 3

16

∣∣∣∣∣
∑

a

baua

∣∣∣∣∣

2

. (73)

It is instructive to return to the case of Section 1 in which all nonperturbative

corrections are vanishing and see how the run-away behavior is manifest in the

linear multiplet formulation. Taking (70) for f = g = 0 and b = bE8 = 30/8π2 we

plot the behavior of the dilaton scalar potential in Planck units in Figure 3. Note

that the general behavior is that of Figure 1, but now the asymptotic approach to

vanishing coupling occurs for ℓ → 0 while the unbounded-from-below direction is

for ℓ → ∞, which implies strong coupling. From the identity (62) we can derive

the necessary and sufficient condition on the function f(ℓ) such that V (ℓ) in (70)

or (73) is bounded from below:

f − ℓ
df(ℓ)

dℓ
≥ −O(ℓe1/baℓ) for ℓ → 0, (74)

f − ℓ
df(ℓ)

dℓ
≥ 2 for ℓ → ∞ . (75)

It is clear that condition (74) is not at all restrictive, and therefore has no nontrivial

implication. On the other hand, condition (75) is quite restrictive; in particular the

simple tree-level model with f = g = 0 violates this condition – hence the runaway

solution. According to our assumption of boundedness for g(ℓ) and f(ℓ) it must

be that ℓ=0 is the only pole of g − (f + 1)/bℓ. We therefore recognize a relation

between 〈ūu〉 and 〈ℓ〉: gauginos condense (i.e., 〈ūu〉 6= 0) if and only if the dilaton

is stabilized (i.e., 〈ℓ〉 6= 0).
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Fig. 3. Plot of dilaton potential V(ℓ) for the potential of (70) without nonperturbative
effects. The shape of the potential as a function of ℓ = L|θ=θ̄=0 is given with the height of the
potential in arbitrary units (mpl = 1). For this case we have taken the condensing group to be
E8.
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Fig. 4. Plot of dilaton potential V(ℓ) for the potential of (70) with nonperturbative
effects parameterized by (59). The shape of the potential as a function of ℓ = L|θ=θ̄=0 is
given with the height of the potential in arbitrary units (mpl = 1). For this case we have taken
the condensing group to be E8 and chosen the parameter A = 6.92 in (59).
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Let us demonstrate the Kähler stabilization effect by using (59) as our ansatz for

f(ℓ). Note that the boundedness condition (75) requires A ≥ 2. We will therefore

take b = bE8 and choose A = 6.92. The resulting scalar potential for the dilaton

is plotted in Figure 4. Again, the plots give the value of the dilaton potential in

arbitrary units; the absolute size of the potential values have been rescaled to more

easily exhibit the shape of the potential. For large values of ℓ the potential is now

bounded. A minimum occurs for 〈ℓ〉 ≃ 0.45 for which f(ℓ = 0.45) ≃ 1 and thus

g2
str

≃ 1/2 from (64). The choice A = 6.92 was made so as to ensure 〈V (ℓ)〉 = 0 at

the minimum – the other properties of the low-energy phenomenology are generally

insensitive to the precise choice.

It has occasionally been argued that utilizing such nonperturbative corrections

in the Kähler potential should be avoided on the grounds that the absence of holo-

morphy arguments implies that we have (as yet) no real theoretical control over the

magnitude of these effects. We would like to emphasize that no matter what mech-

anism generates the corrections to the Kähler potential, conditions (74) and (75)

tell us precisely how to modify the theory so as to have a stabilized dilaton (and

therefore broken supersymmetry by the argument of above). These arguments are

quite general. Provided (75) holds the potential of the modified model in the strong-

coupling regime is always bounded from below, and in most cases rises as ℓ increases.

Joining the weak-coupling behavior of the modified model to its strong-coupling be-

havior therefore strongly suggests that its potential has a nontrivial minimum (at

ℓ 6= 0). Furthermore, if this nontrivial minimum is global, then the dilaton is sta-

bilized. Though we are unable to study the exact Kähler potential at present, it

is nevertheless interesting to study models with reasonable Kähler potentials for

the purpose of illustrating the significance of conditions (74) and (75) as well as

displaying explicit examples with supersymmetry breaking. Furthermore, as we will

see in Sections 3 - 5, these corrections give rise to a distinctive phenomenology that

is in many respects beneficial.

2. The interaction of moduli with matter

In the previous section we considered a very simple system of moduli, focusing

on those closed-string moduli (or geometric moduli) which determine the gauge

couplings of the low-energy effective theory. We saw that the driving mechanism

for moduli stabilization and supersymmetry breaking is gaugino condensation. We

briefly considered some of the classes of mechanisms available to the effective field

theorist for achieving a realistic supersymmetry-breaking minimum. Looking at

the theory from the four-dimensional effective field theory point of view allows us

to treat many possible constructions at once. However, not all the mechanisms

discussed in Section 1 can be operative in the same theory at the same time. These

issues depend on the nature of the underlying string construction chosen. Given

such a specific construction, however, it is usually possible to do better than the

crude picture in Section 1 would indicate. This is because much is known about the
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moduli that appear in the four-dimensional effective field theory for most specific

constructions – including such important quantities as the moduli dependence of

Yukawa couplings and kinetic terms, threshold corrections to gauge couplings, and

the existence of certain field theory counterterms descended from the string theory.

In this section we will focus on the case of orbifold compactification of weakly-

coupled heterotic (WCH) string theory as this is an area in which some of the most

concrete examples can be constructed.

2.1. Introducing the Kähler moduli

2.1.1. Modular symmetries

Orbifold compactifications of heterotic string theory are essentially toroidal back-

grounds. Early constructions generally took the compact six-dimensional space to

factorize into three two-torii M = T 2 ×T 2 ×T 2, though the current renaissance in

orbifold model building has often exploited nonfactorizable compactifications.79,80,81,82

As mentioned in Section 1, the presence of toroidal geometry implies moduli which

dictate the sizes and relative orientations of the torii. These moduli will enjoy var-

ious symmetry transformations that leave the spectrum and equations of motion

for the low-energy effective theory unchanged. We will refer to these symmetries

collectively as modular symmetries, though this term is more precisely used in the

context of string theory to refer to symmetries of the string worldsheet which relate

equivalent surfaces. The symmetry group of target space modular transformations

depends on the particular orbifold (or orientifold) background.

Recall from Section 1 that for orbifolds we expect at minimum three untwisted

Kähler moduli T I which describe the size of the three complex planes. Depending on

the orbifold action imposed there may be additional Kähler moduli as well as some

number of degrees of freedom U I related to deformations of the complex structure.

For example, one of the most studied orbifolds is the Z2 ×Z2 orbifold83,84,85 which

has three Kähler moduli T I , I = 1, 2, 3 and three complex structure moduli U I , I =

1, 2, 3. Another commonly studied example is the Z3 orbifold,86,87,88 where there

are nine Kähler moduli fields labeled by T IJ , with I, J = 1, 2, 3. It is common to

make the assumption that the off-diagonal components of this matrix are fixed at

the string scale and do not correspond to dynamical degrees of freedom in the low

energy theory. One thus works with only the diagonal entries T I ≡ T II . Finally,

there exist cases such as the (2,2) Abelian orbifolds1 which gives rise to the low-

energy gauge group E8⊗E6⊗U(1)2 in which there are precisely the minimal number

of three untwisted Kähler moduli T I , I = 1, 2, 3.

Both complex structure and Kähler moduli will generally transform under some

set of SL(2,Z) symmetry groups (or their subgroups).4,5 The SL(2,Z) group acts

as follows on a generic single-index modulus M I as

M I → aIM I − ibI

icIM I + dI
, aIdI − bIcI = 1 , aI , bI , cI , dI ∈ Z , (76)
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with an analogous matrix equation for moduli which carry two complex-plane in-

dices. This set of transformations can be generated from the two transformations

M I → 1/M I and M I →M I + i. From the standard field definition of (4) we note

that for Kähler moduli these transformations are generated by the well-known du-

ality transformation RI → 1/RI as well as by discrete shifts of the axionic field bImn

associated with each of the three complex planes. The Kähler potentials describ-

ing these untwisted moduli can be inferred from the dimensional truncation of the

ten-dimensional supergravity Lagrangian. At leading order this Kähler potential is

simply K = − lnV where V is the volume of the compact space. Thus

K =
∑

I

gI ; gI = − ln(T I + T
I
) or gI = − ln(U I + U

I
) (77)

for single-index fields, and

K = − ln det(T IJ + T
IJ

) (78)

for the more general case.89 For more details and examples, the reader is referred

to the review of Bailin and Love,13 and references therein. For the remainder of

this section we will choose the simple case of three diagonal Kähler moduli as this

is sufficient to illustrate the types of structures one expects in this class of theories.

Note that under an SL(2,Z) transformation (76) we have

gI → gI + F I + F
I

; F I = ln(icT I + d) (79)

and since the fields T I have no (classical) superpotential we immediately recog-

nize (79) as a Kähler transformation. The classical effective supergravity action is

therefore invariant under (76). This is welcome, since modular invariance is known

to be (perturbatively) preserved in string theory;90,91 that is, the set of transfor-

mations (76) on the various T I and U I should be symmetries of the low-energy

effective Lagrangian to all-loop order in string perturbation theory.a

Let us see how this picture is modified by the inclusion of matter fields. We de-

note chiral superfields of gauge-charged matter by Zi, with lower-case Latin indices.

In orbifold models the Kähler metric for the matter fields arising from untwisted

sectors is precisely known. It continues to be given by the volume of the compact

space, but in this case the relation in (4) is modified14,92,93 to

2(RI)2 = T I + T
I −

∑

i

|(Zi)I |2 , (80)

where the fields (Zi)I are identified (upon dimensional reduction) with the compo-

nents of the 10D gauge fields that project into the compact directions associated

aWhen nonperturbative objects, such as D-branes, are present in the construction these SL(2, Z)
symmetries can be absent in the low-energy theory. See, for example, Reference 94.
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with each of the T I . Therefore the Kähler potential for this sector can be immedi-

ately identified as

K = −
∑

I

ln

(
T I + T

I −
∑

i

|(Zi)I |2
)
. (81)

For twisted sector matter, the corresponding expressions are not known exactly

but only to leading order in the matter fields,1 though in some cases additional

information on higher-order terms can be inferred. Continuing to work in the ap-

proximation of only three Kähler moduli (and no complex structure moduli), the

various matter Kähler metrics can be summarized in one form

Kī = κi(T, T )δī + O(|Z|2) with κi(T, T ) =
∏

I

(T I + T
I
)−qI

i . (82)

The parameter qI
i is the modular weight associated with the field Zi. For untwisted

matter with Kähler potential (81), for example, we have qI
i = 1 for one of the three

values for I. It is common in phenomenological studies to treat the three diagonal

Kähler moduli as one common (overall) size modulus T . Under this simplification

the combined matter/modulus Kähler potential is given by

K(T, T ; Z,Z) = −3 ln(T + T ) +
∑

i

|Zi|2
(T + T )qi

, (83)

where qi =
∑

I q
I
i . The modular weights qI

i of the twisted sector fields can readily

be computed in Abelian orbifold theories.89 They are generally fractional numbers,

but the quantity qi (when qI
i are summed over all three complex planes) will yield

an O(1) integer.

A matter field Zi of modular weight qI
i transforms under (76) as

Zi →
∏

I

(icIT I + dI)−qI
i Zi = exp(−

∑

I

qI
i F

I)Zi , (84)

or simply Zi → (icT +d)−qiZi for one overall Kähler modulus.b Writing the Kähler

potential (83) as

K =
∑

I

gI +
∑

i

exp(
∑

I

qI
i g

I)|Zi|2 + O(Z4) (85)

it is easy to see that the total Kähler potential continues to transform as K →
K +

∑
I(F

I + F
I
) under (76), or K → K + 3(F + F ) with F = ln(icT + d) in the

overall modulus case. Therefore the classical symmetry will be preserved provided

the superpotential for gauge-charged matter transforms as 33

W →W (icT + d)−3 . (86)

bWhile (84) is strictly true for untwisted fields, it is possible for fields in twisted sectors with the
same modular weight to mix amongst themselves under SL(2,Z) transformations.97



Kähler Stabilized, Modular Invariant Heterotic String Models 29

To ensure this transformation property the superpotential of string-derived models

has a moduli dependence of the form95,8,96

Wijk = wijk [η(T )]
−2(3−qi−qj−qk)

. (87)

where Wijk = ∂3W (ZN)/∂Zi∂Zj∂Zk and wijk is a constant independent of the

moduli. The function η(T ) is the classical Dedekind eta function

η(T ) = e−πT/12
∞∏

n=1

(1 − e−2πnT ) (88)

and it has a well-defined transformation under (76) given by

η(T ) → (icT + d)
1/2

η(T ) . (89)

The form of (87) can be readily inferred from the requirement of modular invariance

under (76) for the classical supergravity Lagrangian.c But this requirement does not

prevent the multiplication of the effective Yukawa couplings by any function that

is truly invariant under modular transformations.d Such functions have often been

considered, in particular in conjunction with gaugino condensation in a hidden

sector.45 In our study we will not consider the presence of such functions of the

Kähler moduli; since they are modular invariant we do not expect them to shift

the eventual minimum of the potential away from the self-dual points. We refer the

interested reader to the existing literature.98,99

Note that the leading (large T or large radius) behavior of (88) is exp(−πT/12).

For three untwisted fields, the Yukawa interaction (if allowed by string selection

rules) has no modulus-dependence, as can be seen from (87) taking qi = 1 for all

fields. Yukawa interactions involving twisted fields where qi > 1, however, will in-

stead come with an exponential suppression involving the vev of some modulus.

The origin of this suppression factor is readily understood: the Yukawa coupling

in the twisted field case is the result of stringy nonperturbative effects, specifically

world-sheet instantons, which depend on the size of the compact space. Such be-

havior is common to all string theory models in which chiral fermions are localized

at certain fixed points in the compact space and have been useful in efforts toward

building a string-theoretic understanding of flavor.102,103,104 In the BGW model,

however, the Kähler moduli are stabilized at self-dual points where Re, t ∼ 1 and

the exponential factors are therefore not important in the weakly-coupled vacuum.

We have chosen to write the effect of a modular transformation (76) in terms

of a rotation at the chiral superfield level in (84). In fact, however, the Kähler

transformation of (79) is a continuous R-transformation which affects scalars and

cTo actually see this dependence of the superpotential on the Kähler moduli and Dedekind function
emerge from the underlying string theory is not trivial. It involves factoring the level-one Euler
characters for SU(3) from the three-point vertex amplitude calculation in string theory.100,95,101

dSimilarly, in the Yang-Mills sector, there may be modular invariant holomorphic functions of the
Kähler moduli that appear as a universal threshold correction to the Yang-Mills kinetic function
in models with N = 2 sectors.105
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fermions differently. This can be accounted for by assigning the transformation

property

θ → e−
i
2

P

I ImF I

θ (90)

to the Grassmanian theta-parameter. All fermionic modes (modes with unit chiral

weight) in the supersymmetric Lagrangian receive such a chiral rotation, including

the gaugino fields of the gauge supermultiplet. These transformations can be written

as

λa → e−
i
2

P

I Im F I

λa, χA → e
1
2

P

I(iIm F I−2qI
AF I )χA . (91)

Note also that the composite operator Ua = Tr(WαWα)a introduced in (20) for the

confined gauginos will also have a transformation deriving from (91) given by

Ua → e−i
P

I ImF I

Ua . (92)

That (90), (91) and (92) involve phase rotations suggests its interpretation as a type

of U(1)R gauge transformation. This is the guiding principle behind Kähler U(1)

supergravity, which was briefly discussed in Section 1 and is outlined in Appendix

A.

2.1.2. General considerations of W (S, T )

Having introduced the classical symmetries of Kähler moduli in weakly-coupled

heterotic string theory, we are in position to describe the nature of multi-modulus

condensation models. We review them here in part for the sake of historical com-

pleteness, but also to provide a foil for the Kähler stabilization case which concludes

Section 2. For the treatment of this subsection we will use the chiral formulation of

the dilaton.

Prior to the recognition that the set of transformations (76) were perturbatively

good symmetries of the low-energy effective Lagrangian, it was common to assume

that both the tree-level superpotential of the observable sector WO and the effec-

tive scalar potential generated by gaugino condensation (13) would continue to be

independent of the Kähler moduli. In such a situation the effective supergravity

model is determined by the functions

K = − ln(S + S) − 3 ln(T + T ) ,

W = W0 +W (S) = W0 + e−S/ba , (93)

where WO is independent of all moduli and we are taking the case of one overall

Kähler modulus T 1 = T 2 = T 3 = T . The factor of three in the Kähler potential (or

equivalently, the presence of three diagonal Kähler moduli) is significant, in that it

generates a no-scale model for the T-moduli. In particular

KTTF
TF

T
= 3eK |W |2 (94)
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and the final term in (16) is canceled. The potential continues to have a run-away

solution to weak-coupling (〈s〉 → ∞), but in this case the potential is positive-

definite and monotonically decreasing.

A Lagrangian described by (93) is not invariant under (76). Classically the

invariance of the Lagrangian can be restored simply by the replacement W →
Wη−6(T ), and this was the approach taken in the earliest treatments of modular-

invariant gaugino condensation.41,106,107 Consider a gaugino condensate-induced

effective superpotential of the general form

W (S, T ) = Ω(S)η−6(T ) , with 〈Ω〉 6= 0 . (95)

Minimization of the potential with respect to the field s gives rise to two possible

solutions45

Solution (1) : (Ωs +KsΩ) = 0 (96)

Solution (2) : (s+ s̄)2Ωss = e2iγΩ∗ [2 − 3|(t+ t̄)G2 (t, t̄) |2
]

(97)

where γ = arg(Ωs +KsΩ) and we have introduced the modified Eisenstein function

G2 (t, t̄) =

(
2ζ(t) +

1

t+ t̄

)
; ζ(T ) =

1

η(T )

dη(T )

dT
. (98)

These two solutions imply very different properties for the resulting ground state –

and hence for how supersymmetry breaking will ultimately be transmitted to the

observable sector. In the first solution it is clear that
〈
FS
〉

= 0, and it can be

demonstrated that
〈
FT
〉
6= 0. Such an outcome is typically called moduli domi-

nation (or more specifically Kähler moduli domination). The value of the (overall)

Kähler modulus vev can be computed in these two regimes for an arbitrary function

Ω(S). In the first case the minimum can easily be shown108 to be 〈Re t〉 ≃ 1.23

and the self-dual points are local maxima. For the second solution the zeroes of the

Eisenstein function are indeed minima and 〈Re t〉 = 1.e

The situation determined by (96) with 〈Re t〉 ≃ 1.23 has been studied frequently

in the context of weakly-coupled heterotic string models – so much so, in fact, that

this minimum is sometimes stated to be the only outcome possible in modular-

invariant treatments of gaugino condensation. This statement, though erroneous, is

understandable: achieving solution (97) requires a deviation of the Kähler potential

for the dilaton from its tree-level value. If this is achieved, the potential for the

Kähler moduli must be re-examined. Consider the scalar potential for (95)108

V =
1

(s+ s̄)(t+ t̄)3|η(t)|12
{
|(s+ s̄)Ωs − Ω|2 + 3|Ω|2

[
(t+ t̄)2|G2 (t, t̄) |2 − 1

]}
.(99)

When (96) holds the first term in braces vanishes. The potential in the Re t direction

then has a minimum at 〈Re t〉 ≃ 1.23, as can be seen in the top curve in Figure 5.

But let us now imagine that |(s + s̄)Ωs − Ω|2 = K−1
ss̄ F

sF
s̄

is not vanishing, but

eMore generally, the Kähler moduli will be stabilized at one of two self-dual points 〈tI 〉 = 1 or
〈tI〉 = exp (iπ/6) where the Eisenstein function vanishes.
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Fig. 5. Shape of V(t, t̄) in the Re t direction for fixed 〈s + s̄〉. The value of the potential
in (99) is given for Re t in the neighborhood of the fixed point at t = 1. The dilatonic F -term is
taken to have a value parameterized by |(s + s̄)Ωs − Ω|2 = a|Ω|2 with four different values of the
parameter a. For the case a = 0 we recover the result 〈Re t〉 ≃ 1.23. As in earlier plots we have
taken mpl = 1. The value of V (t, t̄) for each value of a has been re-scaled independently in order
to place each plot on the same figure.

instead is given by some coefficient a times |Ω|2. The case of (96) is then simply

the case of a = 0. As the size of the (nonvanishing) dilaton F -term increases, the

potential for Re t becomes increasingly shallow, as is demonstrated in Figure 5.

More importantly, the minimum occurs for values of Re t approaching the self-dual

point of 〈Re t〉 = 1. For some critical value (here at a = 0.5) the Kähler moduli

are fixed at their self-dual points. This is the outcome of (97) and, as we will

see in Section 2.3, it is precisely the outcome that the BGW model with Kähler

stabilization is designed to achieve. Before considering this point, we must look at

the transformations (76) beyond the classical level.

2.2. Anomalies and counterterms

While the diagonal modular transformations of (76) leave the classical effective

supergravity Lagrangian invariant, the form of (91) leads us to expect the symmetry

to be anomalous at the quantum level. This is indeed the case. The variation of the

one loop Lagrangian under a modular transformation is109,110

δL1−loop =
1

64π2

∑

I

∫
d2θ

E

R

∑

a

αI
a(WαWα)aF

I + h.c. , (100)

where F I = ln(icT I + d) and the coefficient αI
a can be computed from the effective

field theory109,65

αI
a = −Ca +

∑

i

(
1 − 2qI

i

)
Ci

a . (101)
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Here Ca and Ci
a are quadratic Casimir operators in the adjoint and matter repre-

sentations, respectively, and qI
i are the modular weights of the matter superfields

Zi charged under the group Ga.

Since the set of SL(2,Z) transformations should remain good symmetries to all

loop order, we expect some mechanism should exist to cancel (100) and leave the

resulting effective Lagrangian invariant once again. Indeed, counterterms must be

added to the effective theory which correspond to massive modes of the string theory

which have been integrated out. From the point of view of the effective supergravity

Lagrangian, as well as the underlying string theory, it is convenient to separate these

contributions into two types of counterterms: (1) operators which we may interpret

as threshold corrections to gauge kinetic functions and (2) Green-Schwarz (GS)

type counterterms which are analogous to the GS anomaly cancelation mechanism

in ten-dimensional string theory. While the former are easy to interpret in the chiral

formulation of the dilaton, the latter find their natural interpretation in terms of a

linear multiplet formalism. We will stress the linear multiplet in what follows.

The GS counterterm is universal in weakly-coupled heterotic string models.110,111,112

In the simplest case we have

Lgs = bgs

∫
d4θ EL

∑

I

gI (102)

where the GS coefficient bgs = Cgs/8π
2 can be computed from knowledge of the

string spectrum. Note that this Green-Schwarz coefficient bgs is truly universal; it

does not depend on the gauge group a or complex plane I which labels (101). This

is remarkable, since the anomaly coefficients in (101) seem to depend very strongly

on the matter content of each sector of the theory. Nevertheless, the anomaly can-

celation condition bgs = αI
a ∀a, I holds for a wide variety of orbifold constructions,

including the Z3 and Z7 orbifolds.3,113 In some sense this universality was to be

expected, in that the object involved in anomaly cancelation for the Kähler U(1)

symmetry is the antisymmetric two-index bµν of the universal dilaton field. This

is not the case in the open string models where multiple closed-string moduli play

this role.114,115

Even in cases where the universal term is not sufficient to cancel the entire

anomaly (that is, where bgs 6= αI
a for some set of {a, I}), there is still always some

part which is universal to all sectors. We therefore will write

αI
a = −Cgs + bIa (103)

with

bIa = Cgs − Ca +
∑

i

(
1 − 2qI

i

)
Ci

a , (104)

thereby separating out the universal contribution. The model-dependent contri-

bution is given by the string threshold corrections.116 These corrections vanish
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completely unless the field T I corresponds to an internal plane which is left in-

variant under some orbifold group transformations. This only occurs if an N = 2

supersymmetric twisted sector is present. Specifically,

Lth = −
∑

I

1

64π2

∫
d4θ

E

R

[
∑

a

bIa(WαWα)a +
∑

a′

bIa′Ua′

]
ln η2(T I) + h.c. (105)

where the two gauge sums run over unconfined and confined gauge groups, re-

spectively. The parameters bIa vanish for orbifold compactifications with no N = 2

supersymmetry sector,3 such as in the Z3 and Z7 orbifolds mentioned above..

The form of (105) is suggestive of a correction to the gauge kinetic functions of

the chiral formulation. This is how such terms are normally presented.117,118,119,43,120,71

For example, modifying the universal gauge kinetic function fa = S of (11) by the

addition of the group-dependent term

δfa = −
∑

I

bIa
8π2

ln η2(T I) (106)

produces the necessary effect to cancel the anomalies, provided the Kähler potential

for the chiral dilaton is suitably modified. In particular, the universal contribution

associated with (102) is incorporated via

K(S, S) → − ln
[
(S + S) + bgsG

]
, (107)

where G = −
∑

I ln(T I + T
I
). Finally, for overall modular invariance to hold, the

formerly invariant dilaton must now be made to transform under (76) as

S → S − bgs

∑

I

F I . (108)

This manner of implementing the modular invariance requirements in the effective

supergravity Lagrangian will produce the same results (to leading order in gstr)

as the linear multiplet treatment we are about to use. Yet it has only one virtue:

retaining the familiar chiral formulation for the dilaton and the gauge kinetic terms.

But we feel that the downside of forcing an unphysical Kähler transformation upon

the dilaton – and the resulting kinetic mixing between dilaton and Kähler moduli

– make the linear multiplet formulation superior.

Furthermore, the actual string calculation prefers the linear multiplet treatment.

To see this, consider the actual correction to the gauge coupling (not the gauge

kinetic function) as computed from the underlying conformal field theory.2 The

resulting correction is given by

δ

(
1

g2
a

)
= −

∑

I

bIa
8π2

ln
[
(T I + T

I
)|η2(T I)|2

]
; (109)

which is not the real part of a holomorphic quantity. Attempting to identify a holo-

morphic quantity in (109) to then factor out and place in the gauge kinetic function

leads to the complications of (107) and (108), as well as additional confusion that
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requires considering the meaning of the Wilsonian versus 2PI effective action for

the dilaton.71

Finally, the virtue of using Kähler U(1) superspace in this context is also appar-

ent. Recall the general treatment of the coupling of linear multiplets to supergravity

in Section 1.3. There it was pointed out that consistency restricts the form of the

kinetic Lagrangian in (44) only up to an integration constant in (46) once the

Kähler potential k(L) is specified. The Green-Schwarz mechanism utilizes this in-

tegration constant with V =
∑

I g
I in (102).f The presence of this constant implies

an additional invariance of the theory under which the function V transforms as

V (Φ,Φ) → V (Φ,Φ) +H(Φ) +H(Φ). The presence of a term
∫

d4θL V in the La-

grangian implies, upon integration by parts in superspace, that terms of the form

H(Φ)WαWα + h.c. are produced when this transformation symmetry is applied.

In the specific case of (102) we see how the anomalous terms in (100) are thereby

naturally canceled with this mechanism.

Since the linear multiplet is itself real the correction in (109) is simple to imple-

ment. Taking (102) together with the (tree-level) kinetic Lagrangian and gaugino

condensate terms of (66) we arrive at the following combined Lagrangian for models

with bIa = 0

Leff =

∫
d4θ E {−2 + f(L) + bgsLG + b′L ln(e−KUU/µ6) } . (110)

In the above form the modular anomaly cancelation by the Green-Schwarz counter-

term is transparent. The second and third terms in (110) are not modular invariant

separately, but their sum is modular invariant, which ensures the modular invari-

ance of the full theory. Note that if we consider a situation in which the various

threshold corrections bIa vanish then anomaly cancelation implies b′ = bgs. If we now

consider nonvanishing bIa then using (43) it is clear that (105) can also be written,

upon integration by parts in superspace, as a D-term superspace integral involv-

ing the modified linear multiplet. Combining the expression in (110) with (105) we

obtain

Leff =

∫
d4θ E {−2 + f(L)

+L

(
b′ ln(e−KUU/µ6) −

∑

I

bIa
8π2

ln
[
(T I + T

I
)|η2(T I)|2

])}
,(111)

and the correction of (109) is naturally implemented in the effective theory.

2.3. The BGW stabilization model

We now have the basic pieces which make up the BGW model of moduli stabiliza-

tion. In this section we will gather all the parts to the effective Lagrangian and

f In Section 4 we will use this integration constant to implement a Green-Schwarz term for anoma-
lous U(1) gauge factors as well.
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exhibit the stabilization of the moduli. We do so for the multi-condensate case, and

we will allow for the presence of matter fields in both the hidden and observable

sectors. For notational convenience we will introduce for each gaugino condensate a

vector superfield La such that the gaugino condensate superfields Ua ≃ (WαWα)a

are then identified as the (anti-)chiral projections of the vector superfields:

Ua = −
(
Dα̇Dα̇ − 8R

)
La , Ua = −

(
DαDα − 8R

)
La . (112)

This is a trivial notational generalization of the fundamental definition in (43). Its

justification lies in the fact that the individual La|θ=θ̄=0 turn out to be nonpropa-

gating degrees of freedom and none will appear in the effective theory component

Lagrangian. In other words, the dilaton field itself is the lowest component of the

field L =
∑

aLa. Similarly only one antisymmetric tensor field (also associated with

L =
∑

a La) is dynamical.

2.3.1. Elements of the effective Lagrangian

We continue to allow for only three untwisted (1, 1) Kähler moduli T I as in the pre-

vious sections. We also continue to make the assumption that the Kähler potential

for the charged-matter/moduli system can be written as

K = k (L) +
∑

I

gI +
∑

i

e
P

IqI
i gI ∣∣Zi

∣∣2 + O
(
Z4
)
, gI = − ln(T I + T

I
), (113)

where k(L) is assumed to be of the form given in (61). The relevant part of the

complete effective Lagrangian is then

Leff = LKE + LGS + Lth +
∑

a

La + LVYT + Lpot , (114)

with the kinetic terms given by (61). The minimal form of the Green-Schwarz

counterterm in (102) is sufficient for canceling anomalies associated with modular

transformations (76). Any modular-invariant function of the matter chiral super-

fields may also appear in the integration constant of (46), however. As the exact

form of the Green-Schwarz counterterm has not been computed from the underly-

ing string theory, we will allow the possibility that the constant V in (46) involves

the entire Kähler potential for chiral fields. We therefore take Lgs to be of the form

LGS =

∫
d4θ E LVgs, (115)

Vgs = bgs

∑

I

gI +
∑

i

pie
P

IqI
i gI ∣∣Zi

∣∣2 + O
(
Z4
)
, (116)

with the coefficients pi being as yet undetermined. A string computation of axionic

vertices in the presence of nonzero backgrounds for twisted moduli and matter fields

is needed to impose further restrictions on Vgs (such as the values of the constants

pi).
g The contribution from possible threshold effects in Lth is given in (105).

gThe computation which found the “minimal form” of (102) set such background fields to zero.65
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The terms Lgs and Lth are contributions to the effective supergravity theory

that are inherited from the underlying string theory. Their role is to cancel the

modular anomaly which arises at the one-loop level (100). To ensure a manifestly

modular-invariant theory, however, we must also include operators which generate

the terms in (100) in the first place. For the confined gauge sector this is already

present in the form of the VY superpotential of (25), but we still lack the equivalent

expression for the unconfined/light degrees of freedom. This is the role of the La

terms. Their specific form in curved superspace is given by121

La = − 1

64π2

∫
d4θ

E

R
(Wα [PχBa]Wα)a + h.c. , (117)

where Pχ is the chiral projection operator PχW
α = Wα, that reduces in the flat

space limit to (16�)−1D2D2. Here we understand a to label unconfined gauge

groups. The functions Ba are65

Ba = −
∑

I

αI
ag

I +

(
Ca −

∑

i

Ci
a

)
k(L) + 2

∑

i

Ci
a ln (1 + piL) . (118)

Due to the assumed invariance of L under modular transformations it is only the

first term in (117) which contributes to the modular anomaly and thus (100) is re-

covered. The other terms, together with the threshold corrections (105) and Green-

Schwarz term, determine the renormalization of the coupling constants ga at the

string scale

g−2
a (µstr) =

〈
1 + f

2ℓ
− b′ak(ℓ) +

∑

i

Ci
a

8π2
ln(1 + piℓ)

−
∑

I

bIa
16π2

ln
[
|η(tI)|2(tI + t

I
)
]〉

, (119)

where tI ≡ T I |θ=θ̄=0.

The Lagrangian describing the condensates is of the VYT-type, as described in

Section 1.2 above and explicitly written in (25):

LVYT =
1

8

∫
d4θ

E

R

∑

a

Ua

[
b′a ln(e−K/2Ua) +

∑

α

bαa ln Πα
a

]
+ h.c. . (120)

Recall the anomaly-matching conditions (26) that the coefficients b′a and bαa must

satisfy:

b′a =
1

8π2

(
Ca −

∑

i

Ci
a

)
, bαa =

∑

i∈α

Ci
a

4π2dα
a

, (121)

where dα
a is the mass dimension of the corresponding matter condensate superfield

Πα
a . Note the important property that when dα

a = 3 for all Π’s charged with respect

to the condensing group Ga we have the identity

b′a +
∑

α

bαa = ba (122)
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with ba being the beta-function coefficient (6) associated with the coupling for the

group Ga. We will make the assumption that dα
a = 3 in what follows below, but

the more general case is easily analyzed by a slight modification of the effective

Lagrangian.122

The final term in (114) is a superpotential term for the matter condensates

consistent with the symmetries of the underlying theory

Lpot =
1

2

∫
d4θ

E

R
eK/2W

(
Πα, T I

)
+ h.c. . (123)

We will adopt the simplifying assumption44 that for fixed α, bαa 6= 0 for only one

value of a. In other words, we assume that each matter condensate is made up fields

charged under only one of the confining groups. This is not a necessary requirement,

but it will make the phenomenological analysis of the model much easier to per-

form. We next assume that there are no unconfined matter fields charged under

the confined hidden sector gauge groups. This allows a simple factorization of the

superpotential of the form

W
(
Πα, T I

)
=
∑

α

Wα (T )Πα, (124)

where the functions Wα are given by

Wα (T ) = cα
∏

I

[
η
(
T I
)]2(qα

I −1)
. (125)

Here qα
I =

∑
i n

α
i q

I
i is the effective modular weight for the matter condensate and

the Yukawa coefficients cα, while a priori unknown variables, are taken to be O (1).

Just as in Section 1.3, we can solve the equations of motion for the auxiliary

fields in the theory to eliminate them from the Lagrangian. The equation of motion

for FUa
+FUa

gives a formula for the real part of the gaugino condensates analogous

to the simple case of (71):

ρ2
a = e−2

b′a
ba eKe−

(1+f)
baℓ e−

bgs

ba

P

IgI∏

I

∣∣η
(
tI
)∣∣ 4(bgs−ba)

ba

∏

α

|bαa/4cα|
−2

bα
a

ba , (126)

where we have introduced the notation ua = Ua|θ=θ̄=0 ≡ ρae
iωa . It is not hard to

see that by using (64) and taking b′a = ba = bgs we obtain the simple expression

in (71) – i.e. the expected one-instanton form for gaugino condensation. Expres-

sion (126) encodes more information, however, than simply the one-loop running

of the gauge coupling which led us to (9) at the beginning of this review. Consider

the renormalization group invariant quantity123

δa =
1

g2
a (µ)

− 3ba
2

lnµ2 +
2Ca

16π2
ln g2

a (µ) +
2

16π2

∑

i

Ci
a lnZi

a (µ). (127)

Using the above expression it is possible to solve for the scale at which the 1/g2(µ)

term becomes negligible relative to the ln g2(µ) term – effectively looking for the
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“all loop” Landau pole for the coupling constant. This scale is related to the string

scale by the relation

µL
2 ∼ µstr

2e
− 2

3bag2
a(µ)

∏

i

[
Zi

a (µstr) /Z
i
a (µL)

] Ci
a

12π2ba . (128)

Comparing the expression in (128) with that in (126) shows that the two agree

provided we identify the wave-function renormalization coefficients Zi
a with the

quantity |4Wα/b
α
a |2. This is precisely what is needed to provide agreement be-

tween (127) and (119), indicating that the condensation scale represents the scale

at which the coupling becomes strong as would be computed using the so-called

“exact” beta-function.

The equation of motion for the auxiliary field Fα of the chiral supermultiplets

Πα gives

0 =
∑

a

bαaua + 4παeK/2Wα ∀ α , (129)

while that for the auxiliary field of supergravity gives

M =
3

4

(
∑

a

b′aua − 4WeK/2

)
. (130)

Using these rules the potential for the fields ℓ and tI is

V =
1

16ℓ2
(v1 − v2 + v3) ,

v1 =

(
1 + ℓ

dg

dℓ

) ∣∣∣∣∣
∑

a

(1 + baℓ)ua

∣∣∣∣∣

2

, v2 = 3ℓ2

∣∣∣∣∣
∑

a

baua

∣∣∣∣∣

2

,

v3 =
ℓ2

(1 + bℓ)

∑

I

∣∣∣∣∣
∑

a

da(tI)ua

∣∣∣∣∣

2

, (131)

where the quantity da(tI) is

da(tI) = (bgs − ba)
(
1 + 4ζ(tI)Re tI

)
(132)

and the Riemann zeta-function is defined in (98). Note that da(tI) ∝ F I vanishes

at the self-dual point tI = 1, for which ζ(tI) = −1/4 and η(tI) ≈ .77. Therefore

we can immediately conclude that the F -terms for the Kähler moduli vanish at

the minimum of the potential. We will return to this important phenomenological

property in subsequent sections. After eliminating v3 in (131) we are left with the

same potential as (73).

2.3.2. Minimizing the scalar potential

In order to go further and make quantitative statements about the scale of gaugino

condensation (and hence supersymmetry breaking) it is necessary to choose a spe-

cific form for the nonperturbative effects characterized by f(L) and g(L). For this
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example we will choose the form (60), suggested originally by Shenker, and include

the first two terms in the summation

f (L) =
[
A0 +A1/

√
L
]
e−B/

√
L . (133)

With this function it is possible to minimize (131) with vanishing cosmological

constant and αstr = 0.04 for A0 = 3.25, A1 = −1.70 and B = 0.4 in (133). Other

combinations of these parameters can also be employed to stabilize the dilaton

at weak coupling with vanishing vacuum energy. In general we would not expect

such a truncation as (133) to be valid for all values of L – it need only be a

valid parameterization in the neighborhood of 〈ℓ〉 consistent with the weak-coupling

limits of (74) and (75).

With the choice of (133) the scale of gaugino condensation can be obtained once

the following are specified: (1) the condensing subgroup(s) of the original hidden

sector gauge group E8, (2) the representations of the matter fields charged under

the condensing subgroup(s), (3) the Yukawa coefficients in the superpotential for

the hidden sector matter fields and (4) the value of the string coupling constant

at the compactification scale, which in turn constrains the coefficients in (133)

necessary to minimize the scalar potential (131).

The above parameter space can be simplified greatly by assuming that all of

the matter in the hidden sector which transforms under a given subgroup Ga is

of the same representation, such as the fundamental representation. This is not

unreasonable given known heterotic string constructions. In this case the sum of

the coefficients bαa over the number of condensates can be replaced by one effective

variable
∑

α

bαa −→ (bαa )eff ; (bαa )eff = Ncb
rep
a . (134)

In the above equation brepa is proportional to the quadratic Casimir operator for the

matter fields in the common representation and the number of condensates, Nc, can

range from zero to a maximum value determined by the condition that the gauge

group presumed to be condensing must remain asymptotically free. The variable

bαa can then be eliminated in (126) in favor of (bαa )eff provided the simultaneous

redefinition cα −→ (cα)eff is made so as to keep the final product in (126) invariant.

Combined with the assumption of universal representations for the matter fields,

this implies

(cα)eff ≡ Nc

(
Nc∏

α=1

cα

) 1
Nc

(135)

which we assume to be an O (1) number, if not slightly smaller.

From a determination of the condensate value ρ the supersymmetry-breaking

scale can be found by solving for the gravitino mass, given by

m3/2 =
1

3
〈|M |〉 =

1

4

〈∣∣∣∣∣
∑

a

baua

∣∣∣∣∣

〉
. (136)
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Fig. 6. Condensation scale and gravitino mass. Contours give the scale of gaugino conden-
sation in GeV in the left panel and gravitino masses of 102 through 105 GeV in the right panel
for (cα)eff = 3.

In the presence of multiple gaugino condensates the low-energy phenomenology is

dominated by the condensate with the largest one-loop beta-function coefficient.

For example, the gravitino mass for the case of pure supersymmetric Yang-Mills

SU(5) condensation (no hidden sector matter fields) would be 4 TeV. The addition

of an additional condensation of pure supersymmetric Yang-Mills SU(4) gauginos

would only add an additional 0.004 GeV to the mass. Therefore let us consider the

case with just one condensate with beta-function coefficient denoted b+:

m3/2 =
1

4
b+ 〈|u+|〉 . (137)

Now for a given choice of the effective Yukawa coupling (cα)eff and unification-scale

gauge coupling gstr the condensation scale

Λcond = (Mpl)
〈
ρ2
+

〉1/6
(138)

and gravitino mass can be plotted in the
{
b+,
(
bα+
)
eff

}
plane. Both quantities are

shown in the two panels of Figure 6 for (cα)eff = 3. The importance of including

the possible effects of matter condensates is clear from the left panel in Figure 6,

in that two different hidden sectors involving condensing groups with the same

beta-function coefficient can give rise to different scales of gaugino condensation.

This scale is a much weaker function of the relevant parameters than that of the

gravitino mass in the right panel of Figure 6.

For fixed values of the unknown Yukawa coefficients cα, the region of param-

eter space for which a phenomenologically preferred value of the supersymmetry-

breaking scale occurs is a rather limited slice of the entire space available. But this

is somewhat deceptive. The variation of the gravitino mass as a function of the

Yukawa parameters cα is shown in Figure 7. On the horizontal axis there are no
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Fig. 7. Gravitino mass regions as a function of effective Yukawa parameter. Gravitino
mass contours for (a) 100 GeV and (b) 10 TeV are shown for (cα)eff = 50 and (cα)eff = 0.1 with
αstr = 0.04. The region between the two sets of curves can be considered roughly the region of
phenomenological viability.

matter condensates (bαa = 0, ∀α) so there is no dependence on the variable (cα)eff .

For very large values of the effective Yukawa parameter the gravitino mass contours

approach an asymptotic value very close to the case shown here for (cα)eff = 50.

We might therefore consider the shaded region between the two sets of contours

as roughly the maximal region of viable parameter space for a given value of the

unified coupling at the string scale.

In Figure 6 and 7 we have chosen to show a range in the beta-function parameter

b+ for which b+ <∼ 0.09. In principle the condensing gauge group can be as large as

E8 in the weakly-coupled heterotic string, for which bE8 = 30/8π2 = 0.38. In general

we expect the hidden sector gauge group to be a product of subgroups of E8. The

set of all such possible breakings has been computed for Abelian orbifolds:124,125





E7, E6

SO(16), SO(14), SO(12), SO(10), SO(8)

SU(9), SU(8), SU(7), SU(6), SU(5), SU(4), SU(3)

. (139)
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Fig. 8. Constraints on the hidden sector. The shaded regions give three different “viable”
regions depending on the value of the unified coupling strength at the string scale. The upper limit
in each case represents a 10 TeV gravitino mass contour with (cα)eff = 1, while the lower bound
represents a 100 GeV gravitino mass contour with (cα)eff = 10. The dot indicates an example
point with a condensing E6 gauge group and 9 27’s of matter forming baryonic condensates.

For each of these groups, one can define a line in the
{
b+,
(
bα+
)
eff

}
plane via the

relations (6), (121) and (122). These lines will all be parallel to one another with

horizontal intercepts at the beta-function coefficient for a pure Yang-Mills theory.

The vertical intercept will then indicate the amount of matter required to prevent

the group from being asymptotically free, thereby eliminating it as a candidate

source for the supersymmetry breaking.

In Figure 8 we have overlaid these gauge lines on a plot similar to Figure 7. We

restrict the Yukawa couplings of the hidden sector to the more reasonable range of

1 ≤ (cα)eff ≤ 10 and give three different values of the string coupling at the string

scale. A typical matter configuration would be represented in Figure 8 by a point

on one of the gauge group lines. As each field adds a discrete amount to (bαa )eff and

the fields must come in gauge-invariant multiples, the set of all such possible hidden
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sector configurations is necessarily a finite one. For example, the point in Figure 8

with Gc = E6 and 9 27’s of matter forming baryonic condensates has b+ = 3/8π2 ≃
0.038 and is indicated in the plot by the circle. Note that one cannot obtain values

of b+ arbitrarily close to zero in practical model building. The number of possible

configurations consistent with a given choice of {αstr, (cα)eff} and supersymmetry-

breaking scale m3/2 is quite restricted. Furthermore, even moderately larger values

of the string coupling at unification become increasingly difficult to obtain as it is

necessary to postulate a hidden sector with very small gauge group and particular

combinations of matter to force the beta-function coefficient to small values.

3. Soft supersymmetry breaking

In this section we will look in greater detail at how supersymmetry is broken by

F -terms from various chiral superfields in the theory. Ultimately we wish to make

contact with the formalism of Brignole et al.120 which describes soft supersymme-

try breaking in the observable sector in terms of chiral superfields S, T I and their

auxiliary fields. After translating the explicit results of the BGW model from Sec-

tion 2.3 into this notation, we will generalize to the case of arbitrary supersymmetry

breaking in models arising from weakly-coupled heterotic strings. This will allow us

to compare the Kähler stabilized case to those of other moduli stabilization regimes

in the literature. It will also allow us to exhibit the one-loop corrections to the tree-

level soft Lagrangian in all generality. Finally we will return to the specific case

of Kähler stabilization in the BGW model to discuss the superpartner spectrum.

Further phenomenological consequences of these results will follow in Section 5.

3.1. Bosonic sector of the BGW model

Returning to the superspace Lagrangian defined by (114), we can derive the lowest

component expression through the means outlined in Appendix A. The result for

the bosonic part of the component Lagrangian is given by

1

e
LB = − 1

2
R − (1 + bℓ)

∑

I

1

(tI + t̄I)2

(
∂µt̄I ∂µt

I − F
I
F I
)

− 1

16ℓ2
(ℓg′ + 1)

[
4 (∂µℓ ∂µℓ−BµBµ) + ūu− 4eK/2ℓ

(
Wū+ uW̄

)]

+
1

9
(ℓg′ − 2)

[
MM − bµbµ − 3

4

{
M

(
∑

b

b′bub − 4WeK/2

)
+ h.c.

}]

+
1

8

∑

a

{
f + 1

ℓ
+ b′a ln(e2−K ūaua) +

∑

α

bαa ln(παπ̄α)

+
∑

I

[
bgI − bIa

4π2
ln |η(tI)|2

]} (
Fa − uaM + h.c.

)
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− 1

16ℓ

∑

a

[
b′a (ℓg′ + 1) ūua − 4ℓua

(
∑

α

bαa
Fα

πα
+ (b′a − b)

F I

2RetI

)
+ h.c.

]

+
i

2

∑

a

[
b′a ln(

ua

ūa
) +

∑

α

bαa ln(
πα

π̄α
)

]
∇µBa

µ − b

2

∑

I

∂µIm tI

Re tI
Bµ,

+
∑

I,a

bIa
16π2

[
ζ(tI)

(
2iBµ

a∇µt
I − uaF

I
)

+ h.c.
]

+ eK/2

[
∑

I

F I (WI +KIW ) +
∑

α

FαWα + h.c.

]
, (140)

where ℓ = L|θ=θ̄=0, g
′ = g′(ℓ) = dg(L)/dL|θ=θ̄=0, bµ and M = (M)† = −6R|θ=θ̄=0

are auxiliary components of the supergravity multiplet and we have employed the

following definitions

σµ
αα̇B

a
µ =

1

2
[Dα,Dα̇ ]La|θ=θ̄=0 +

2

3
ℓaσ

µ
αα̇bµ, Bµ =

∑

a

Bµ
a ,

ua = Ua|θ=θ̄=0 = −(D2 − 8R)La|θ=θ̄=0, u =
∑

a

ua,

ūa = Ua|θ=θ̄=0 = −(D2 − 8R†)La|θ=θ̄=0, ū =
∑

a

ūa,

−4F a = D2Ua|θ=θ̄=0, −4F
a

= D2
Ua|θ=θ̄=0, FU =

∑

a

F a,

πα = Πα|θ=θ̄=0 π̄α = Π
α|θ=θ̄=0

−4Fα = D2Πα|θ=θ̄=0, −4F
α

= D2
Π

α|θ=θ̄=0,

tI = T I |θ=θ̄=0, −4F I = D2T I |θ=θ̄=0,

t̄I = T
I |θ=θ̄=0, −4F

I
= D2

T̄ I |θ=θ̄=0 . (141)

The auxiliary fields in the bosonic Lagrangian can be eliminated via their equations

of motion. For the auxiliary fields of the supergravity multiplet these are simply

bµ = 0, M =
3

4

(
∑

a

b′aua − 4WeK/2

)
, (142)

while those associated with the chiral superfields give

F I =
Re tI

2(1 + bℓ)

{
∑

a

ūa

[
(b− b′a) +

bIa
2π2

ζ(t̄I)Re tI
]
− 4eK/2

(
2Re tIW I − W̄

)
}
,

0 =
∑

a

bαaua + 4παeK/2Wα ∀ α,

ūaua =
ℓ

e2
eg − (f+1)/b′aℓ−

P

I bI
agI/8π2b′a

∏

I

|η(tI)|bI
a/2π2b′a

∏

α

(πα
r π̄

α
r )−bα

a /b′a , (143)
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for F I , Fα and F a + F
a
, respectively. In the above we have defined the modular

invariant quantity

πα
r = Πα

r |θ=θ̄=0 = e
P

I qα
I gI/2Πα|θ=θ̄=0 . (144)

With these (140) becomes simply

1

e
LB = − 1

2
R − (1 + bℓ)

∑

I

∂µt̄I ∂µt
I

(tI + t̄I)2
− 1

4ℓ2
(ℓg′ + 1) (∂µℓ ∂µℓ−BµBµ)

−
∑

a

(
b′aωa +

∑

α

bαaφ
α

)
∇µBa

µ − b

2

∑

I

∂µIm tI

Re tI
Bµ

+ i
∑

I,a

bIa
8π2

[
ζ(tI)Bµ

a∇µt
I − h.c.

]
− V , (145)

with the field definitions

ua = ρae
iωa , πα = ηαeiφα

, 2φα = −i ln
(∑

a b
α
auaW̄α∑

a b
α
a ūaWα

)
if Wα 6= 0 . (146)

The final form of the scalar potential is then

V =
(ℓg′ + 1)

16ℓ2

{
ūu+ ℓ

[
ū

(
∑

a

b′aua − 4eK/2W

)
+ h.c.

]}

+
1

16(1 + bℓ)

∑

I

∣∣∣∣∣
∑

a

ua

(
b− b′a +

bIa
2π2

ζ(tI)Re tI
)
− 4eK/2

(
2Re tIWI −W

)
∣∣∣∣∣

2

+
1

16
(ℓg′ − 2)

∣∣∣∣∣
∑

b

b′bub − 4WeK/2

∣∣∣∣∣

2

, (147)

which, upon substitution of relations (62) and (122), reduces to (131) when the

form (125) is used for the matter condensate superpotential. The expression for

the condensate itself, as a function of model parameters, is precisely the expression

in (126) in this case.

As indicated in the last chapter, supersymmetry is broken at the minimum

of the scalar potential in (147). The result should be the appearance of new soft

supersymmetry-breaking terms in the component Lagrangian for the observable

sector. These can be identified directly by looking at the scalar potential for the

observable sector as determined from the component expansion of (114). This direct

approach was, in fact, the method employed in the initial studies of this class of

theories.126,122 Using the one-condensate approximation these tree level soft terms

are given by

M0
a = −g

2
a (µ)

2

[
3b+

1 + b+ℓ
+
∑

i

piC
i
a

4π2b+ (1 + piℓ)

]
m3/2 , (148)



Kähler Stabilized, Modular Invariant Heterotic String Models 47

and

Aijk =
ū+

4

[
b+

1 + b+ℓ

(pi − b+)

(1 + piℓ)

]
+ (i→ j) + (i→ k) , (149)

(M0
i )2 =

|u+|2
16

(
pi − b+
1 + piℓ

)2

, (150)

where pi is the possibly nonvanishing coupling of the chiral matter to the Green-

Schwarz term in (116). To obtain these it was necessary to use (62) and the vacuum

condition 〈V 〉 = 0 in (131).

A great deal of simplification is possible, particularly in finding the one-loop

corrected values of these expressions, in circumstances in which the supersymmetry

breaking is associated with nonvanishing F -terms for chiral superfields.127 This sim-

plification was exploited by Brignole et al. to systematize possible patterns of soft

supersymmetry breaking in a wide class of string-inspired models.120,128 In this pa-

rameterization supersymmetry-breaking effects are computed in a context in which

closed-string moduli (such as the dilaton, Kähler moduli and complex structure

moduli) are represented by chiral superfields, and each is allowed to participate

in supersymmetry breaking via nonvanishing auxiliary field vevs. Attempting to

use this parameterization in the present case immediately gives rise to an apparent

contradiction. We are here working in a context in which we imagine no complex

structure moduli. The Kähler moduli have vanishing F I at the minimum of the

scalar potential. This leaves only the dilaton to do the job of communicating the

supersymmetry breaking of the hidden sector to the fields of the observable sector

– a situation commonly referred to as dilaton domination. However, the dilaton

multiplet in the linear formulation has no auxiliary field! What plays the role of

nonvanishing
〈
FS
〉

in our case?

3.2. Moduli as messengers of supersymmetry breaking

The key to understand the apparent paradox can be found in the modified linearity

conditions of (43) and the resulting F -term expressions in (55). The equation of

motion for FUa + F
Ua

generates the expression for the condensate in (143). In

a sense, the lowest component of the condensate (which is acquiring a vacuum

expectation value at the minimum of the scalar potential) plays the role of “auxiliary

field” for the dilaton in the modified linear multiplet. Let us see more explicitly how

this comes about.

In the presence of a (nonperturbatively induced) potential for the dilaton, the

tree level scalar Lagrangian for the condensate/moduli sector takes the form

Lscalar = −
∑

α

∂µt
I∂µt̄I

(tI + t̄I)2
− k′(ℓ)

4ℓ
∂µℓ∂

µℓ− ℓ

k′(ℓ)
∂µa∂

µa− V , (151)

where the axion a is related to the two-form bµν of the linear multiplet by a duality
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transformation which follows from (1), (3) and (38):

1

2
ǫµνρσ∂νbρσ = − 2ℓ

k′(ℓ)
∂µa . (152)

The scalar potential V can be cast in the following suggestive form

V =
∑

α

1

(tI + t̄I)2
FαF

α
+

ℓ

k′(ℓ)
F 2 − 1

3
MM (153)

provided we make the identification

F =
k′(ℓ)

4ℓ
f(ℓ, tI , zi) (154)

where f(ℓ, tI , zi) is a complex but nonholomorphic function of the scalar fields. For

example in the class of models being considered here

f(ℓ, tI , zi) = −
∑

a

(1 + ℓba)ūa ≈ −(1 + ℓb+)ū+, (155)

where ūa(ℓ, t
I , zi) is the value of the gaugino condensate for hidden gauge group Ga.

It is the function F , defined via (154), that will play the role of FS in this model.

To exhibit this connection, consider the variable x(ℓ) = 2g−2
str

(Mstr). This vari-

able can be related to the function k(ℓ) via the differential equations

k′(ℓ) = −ℓx′(ℓ), ∂ℓ = − ℓ

k′(ℓ)
∂x , (156)

from which we derive the following relations

∂k(x)

∂x
= k′(ℓ)

∂ℓ

∂x
= −ℓ, ∂2k(x)

∂x2
= − ∂ℓ

∂x
=

ℓ

k′(ℓ)
,

k′(ℓ)

4ℓ
∂µℓ∂

µℓ =
ℓ

4k′(ℓ)
∂µx∂

µx =
1

4

∂2k(x)

∂x2
∂µx∂

µx . (157)

We would like to recast (151) into the standard form we expect for a theory of only

chiral superfields:

Lscalar = −
∑

N

KNN

(
∂µz

N∂µz̄N + FNF
N
)

+
1

3
MM ,

K = k (s+ s̄) +K(tI , t̄I) +
∑

i

κi|zi|2 , (158)

where we now let the index N run over the chiral dilaton, Kähler moduli and gauge-

charged matter. This can be accomplished by setting x = s+s̄ and a = Im s in (157)

provided we identify F = FS and kss̄ = ℓ/k′(ℓ). These relations change slightly

when we include a Green-Schwarz counterterm,129 but the basic correspondence

remains the same.

We therefore conclude that it is the dilaton that acts as the messenger of su-

persymmetry breaking in this model, albeit in an indirect way. Since the operators

which connect this field to those of the observable sector involve one inverse power
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Fig. 9. Effective metric for the chiral dilaton field. The effective metric kss̄ of (159) is
plotted as a function of ℓ for the tree-level case (dashed line) and the case with nonperturbative
corrections (solid line). The nonperturbative corrections produce a large maximum in the effective
metric near the minimum of V (ℓ).

of the Planck scale (or, strictly speaking, the string scale) this is rightly called an

instance of “gravity mediation” as in the general parlance. From (157) we have the

desired translation from the linear multiplet to the chiral multiplet notation

〈ks〉 = −ℓ 〈kss̄〉 =
ℓ2

1 + ℓg′(ℓ)
(159)

which is a property of the vacuum state of the theory. The key feature of (159) is

the deviation of the dilaton Kähler metric from its tree level (perturbative) value.

The importance of this fact can be appreciated from another direction. Taking

the expression of (126), let us assume the nonperturbative superpotential gener-

ated by gaugino condensation for the chiral dilaton would be of the form of (13):

W (S) ∝ e−S/2b+ with b+ being the largest beta-function coefficient among the con-

densing gauge groups of the hidden sector. From the equations of motion (15) one

immediately sees that requiring the potential in (16) to vanish at the minimum will

require that

(kss̄)

∣∣∣∣ks −
1

2b+

∣∣∣∣
2

= 3 → (kss̄)−1/2 =
√

3
2b+

1 − 2b+ks
, (160)

where we choose to keep the precise form of the derivatives of the dilaton Kähler

potential unspecified. The condition in (160) is independent of the means by which

the dilaton is stabilized and is a result merely of requiring a vanishing vacuum en-

ergy in the dilaton-dominated limit. This is sometimes referred to as the generalized

dilaton-domination scenario.130
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The constraint of (160) is precisely what is engineered by the nonperturbative

correction f(ℓ) and g(ℓ) in (61). For example, the explicit case of (133) described

in Section 2.3 was able to achieve (160) with 〈ks〉 = −g2
str
/2. For the parameter

set {A0 = 3.25, A1 = −1.70, B = 0.4} the tree-level dilaton metric ktree
ss̄ = ℓ2 and

corrected dilaton metric of (159) are plotted as function of ℓ in Figure 9, for arbitrary

units (mpl = 1). The effect of the nonperturbative corrections is to generate a

nontrivial feature in the metric near the minimum of the potential. Here this peak

occurs at 〈ℓ〉 ≃ 0.12, for which g2
str

≃ 0.5. The presence and importance of such a

feature in the dilaton metric has been noted in this scenario by other authors.130,131

It is helpful to parameterize the departure that (160) represents from the tree

level Kähler metric
〈
(ktree

ss̄ )1/2
〉

= 〈1/(s+ s̄)〉 = g2
str
/2 ≃ 1/4 by introducing the

phenomenological parameter

anp ≡
(
ktree

ss̄

ktrue
ss̄

)1/2

(161)

so that the auxiliary field of the dilaton chiral supermultiplet can be expressed as

FS =
√

3m3/2(kss̄)
−1/2 =

√
3m3/2anp(ktree

ss̄ )−1/2. (162)

An important property of (160) is to recognize that the factor of b+, containing

as it does a loop factor, will suppress the magnitude of the auxiliary field FS

relative to that of the supergravity auxiliary field M through the relation (162).

That is, provided Ks ∼ O(1) so that Ksb+ ≪ 1 we can immediately see that

a Kähler potential which stabilizes the dilaton (while simultaneously providing

zero vacuum energy) will necessarily result in a suppressed dilaton contribution to

soft supersymmetry breaking. This is an unmistakable property of the generalized

dilaton-domination scenario when achieved via Kähler stabilization. We will return

to these issues in Chapter 5 below.

By virtue of being able to recast the results of Section 3.1 in terms of an effective

chiral multiplet, we can employ the results of Kaplunovsky and Louis127 to imme-

diately write down the soft supersymmetry-breaking parameters of the observable

sector. We will give them here to establish our notation and conventions for what

follows. The tree level gaugino mass for canonically normalized gaugino fields is

simply

M0
a =

g2
a

2
Fn∂nf

0
a , (163)

where f0
a is the tree-level gauge-kinetic function (here taken to be the chiral dilaton

S) and the notation Fn∂nX implies summation over all relevant chiral superfields.

We define our trilinear A-terms and scalar masses for canonically normalized fields

by

VA =
1

6

∑

ijk

Aijke
K/2Wijkz

izjzk + h.c.
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=
1

6

∑

ijk

Aijke
K/2(κiκjκk)−1/2Wijk ẑ

iẑj ẑk + h.c. , (164)

where ẑi = κ
1/2
i zi is a normalized scalar field, and by

VM =
∑

i

M2
i κi|zi|2 =

∑

i

M2
i |ẑi|2, (165)

where the function κi is the generalization of the specific case in (82).

The precise form of the bilinear B-terms depends on how the supersymmetric

µ-parameter of the Higgs potential is generated. This remains an open problem in

superstring phenomenology,10 as fundamental mass parameters are generally zero

for fields in the massless spectrum. For the purposes of this section we merely

give the general result. Let νij be a (possibly field-dependent) bilinear term in the

superpotential and let the Kähler potential contain a term of the Giudice-Masiero

form132

K(Zi, Z
ı̄
) =

∑

i

κi|Zi|2 +
1

2

∑

ij

[
αij(Z

n, Z
n̄
)ZiZj + h.c.

]
+ O(|Zi|3) . (166)

Both are sources of masses for fields of the chiral supermultiplets Zi

LM = −
∑

ij

[
1

2
eK/2

(
ψiµijψ

j + h.c.
)

+ eK |zi|2κj|µij |2
]
, (167)

where the effective µ-parameter is given by

µij = νij − e−K/2

(
M

3
αij − F

n̄
∂n̄αij

)
. (168)

The B-term potential takes the form

VB =
1

2

∑

ij

Bije
K/2µijz

izj + h.c. =
1

2

∑

ij

Bije
K/2(κiκj)

− 1
2µij ẑ

iẑj + h.c. . (169)

With these conventions our tree level expressions are

A0
ijk =

〈
Fn∂n ln(κiκjκke

−K/Wijk)
〉

(170)

B0
ij =

〈
Fn∂n ln(κiκje

−K/µij) +
M

3

〉
(171)

(M0
i )2 =

〈
MM

9
− FnF

m̄
∂n∂m̄ lnκi

〉
. (172)

If we specialize now to the case of moduli dependence given by (82), (87)

and fa = S, then the tree level gaugino masses (163), A-terms (170) and scalar

masses (172) become

M0
a =

g2
a

2
FS

A0
ijk = (3 − qi − qj − qk)G2 (t, t̄)FT − kSF

S

(
M0

i

)2
=
MM

9
− qi

|FT |2
(t+ t̄)2

, (173)
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where we have taken FT1 = FT2 = FT3 = FT and dropped the cumbersome

brackets 〈. . .〉. For the BGW model we have
〈
FT
〉

= 0 and an effective
〈
FS
〉
6= 0.

The tree-level soft terms are therefore simply

M0
a =

g2
a

2
FS , A0

ijk = −kSF
S ,

(
M0

i

)2
= m2

3/2 . (174)

We can be more explicit by inserting the appropriate “effective” F -term expression

for FS . Starting with the definition in (154) and taking the one-condensate approx-

imation of (155) we can quickly recover the expressions in (148), (149) and (150)

for pi = 0.

3.3. Loop corrections

The above expressions are insufficient to adequately describe the superpartner spec-

trum of the BGW model, however. From (161) we note that

anp =
√

3
g2
str
b+

1 − 2ksb+
≪ 1 , (175)

and therefore from (162) we see that if g2
str

= 1/2 we have
∣∣∣∣
FS

M

∣∣∣∣ =
∣∣∣∣
FS

3m3/2

∣∣∣∣ =
2

g2
str

anp√
3
≃ 4anp√

3
≪ 1 . (176)

It is evident, therefore, that quantum corrections to soft supersymmetry-breaking

terms suppressed by loop factors can, in fact, be comparable in size to these tree-

level terms for both the gaugino mass and the trilinear A-term. In particular, loop

corrections arising from the conformal anomaly are proportional to M itself and

receive no suppression,a so they can be competitive with the tree level contribu-

tions in the presence of a nontrivial Kähler potential for the dilaton and should be

included.121,133

In this section we aim to provide sufficient background to justify the form of

these one-loop corrections to soft terms, as well as explain some notation we will

need for our phenomenological analysis. More complete treatments exist in the

literature.135,121,133,129 We begin with gaugino masses which can be understood

as a sum of loop-induced contributions from the field theory point of view, and

terms that can be thought of as one loop stringy corrections. The field theory loop

contribution is given by 121,134

M1
a |an =

g2
a(µ)

2

[
baM − 1

8π2

(
Ca −

∑

i

Ci
a

)
FnKn − 1

4π2

∑

i

Ci
aF

n∂n lnκi

]
.(177)

aWe continue to use the popular, if not particularly precise, name for these “universal” terms.136

The results presented here were obtained through a direct one-loop computation with supersym-
metric regularization and do not appeal to notions of superconformal transformations and their
possible anomalies.
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As described in Section 2, one expects modular anomaly cancelation to occur

through a universal Green-Schwarz counterterm with group-independent coefficient

bgs as well as possible string threshold corrections with coefficient bIa. The one loop

contribution to gaugino masses from both terms are proportional to the auxiliary

fields of the Kähler moduli, and must vanish in the vacuum of the BGW class of

models. We are therefore left with only the field-theory contribution of (177) for

n = S. Putting together the tree level gaugino masses with the loop correction gives

Ma =
g2

a (µ)

2

{
baM + [1 − b′aks]F

S
}

(178)

where the quantity b′a is defined in (26).

To understand the form of the one-loop A-terms and scalar masses it is necessary

to describe how field theory loops are regulated in supergravity, seen as an effective

theory of strings. The regulation of matter and Yang-Mills loop contributions to

the matter wave function renormalization requires the introduction of Pauli-Villars

chiral superfields ΦA = Φi, Φ̂i and Φa which transform according to the chiral

matter, anti-chiral matter and adjoint representations of the gauge group and have

signatures ηA = −1,+1,+1, respectively. These fields are coupled to the light fields

Zi through the superpotential

W (ΦA, Zi) =
1

2
Wij(Z

k)ΦiΦj +
√

2ΦaΦ̂i(TaZ)i + · · · , (179)

where Ta is a generator of the gauge group, and their Kähler potential takes the

schematic form

Kpv =
∑

A

κΦ
A(ZN )|ΦA|2, (180)

where the functions κA are a priori functions of the hidden sector (moduli) fields.

These regulator fields must be introduced in such a way as to cancel the quadratic

divergences of the light field loops – and thus their Kähler potential is determined

relative to that of the fields which they regulate.

The PV mass for each superfield ΦA is generated by coupling it to another field

ΠA = (Πi, Π̂i,Πa) in the representation of the gauge group conjugate to that of ΦA

through a superpotential term

Wm =
∑

A

µA(ZN )ΦAΠA, (181)

where µA(ZN) can in general be a holomorphic function of the light superfields.

There is no constraint on the Kähler potential for the fields ΠA as there was for

those of the ΦA. However, if we demand that our regularization preserve modular

invariance then we can determine the moduli dependence of µA(ZN ) as a function

of the a priori unknown modular weight of the regulator fields ΠA. Taking the case
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of an overall Kähler modulus T for simplicity we have




Φi : κΦ
i = κi = (T + T )−qi ,

Φ̂i : κ̂Φ
i = κ−1

i ,

Φa : κΦ
a = g−2

a eK = g−2
a ek(T + T )−3 ,

(182)

and the supersymmetric mass µA(ZN) in (181) is then

µA(ZN ) = µA(S) [η(T )]
−2(3−qA−q′

A)
, (183)

with qA and q′A being the modular weights of the fields ΦA and ΠA, respectively.

Furthermore, we can postulate the form of the moduli dependence of κA for the

mass-generating fields

ΠA : κΠ
A = hA(S + S)(T + T )−q′

A . (184)

At this point the dilaton dependence in the superpotential term (181) and the

functions hA, as well as the modular weights q′A of the fields ΠA, are new free

parameters of the theory introduced at one loop as a consequence of how the theory

is regulated. Given (181) we can extract the Pauli-Villars masses that appear as

regulator masses in the logarithms at one loop

m2
A = eK(κΦ

A)−1/2(κΠ
A)−1/2|µA|2, (185)

with mA = (mi, m̂i,ma) being the masses of the regulator fields Φi, Φ̂i,Φa, respec-

tively.

In terms of these regulator masses, the complete one-loop correction to the

trilinear A-terms and scalar masses in a general supergravity theory was given

elsewhere.129 Here we will simplify things to the maximum extent in order to pro-

ceed to the phenomenology of the model. To that end, let us assume that the

functions µA(ZN ) that appear in (181) and (185) are proportional to one overall

Pauli-Villars scale µpv so that µ̂i = µa = µi ≡ µpv. This scale is presumed to

represent some fundamental scale in the underlying string theory. Let us further

assume that there is no dilaton dependence of the PV masses so that hA(S + S) is

trivial and µpv is constant. With these simplifications the complete trilinear A-term

at one loop is given by

Aijk =
1

3
A0

ijk − 1

3
γiM −G2 (t, t̄)FT

(
∑

a

γa
i pia +

∑

lm

γlm
i plm

)

− ln
[
(t+ t̄)|η(t)|4

]
(

2
∑

a

γa
i piaM

0
a +

∑

lm

γlm
i plmA

0
ilm

)

+2
∑

a

γa
i M

0
a ln(µ2

pv
/µ2

R) +
∑

lm

γlm
i A0

ilm ln(µ2
pv
/µ2

R) + cyclic(ijk),(186)

where we have defined the following combinations of modular weights from the

Pauli-Villars sector

pij = 3 − 1

2

(
qi + qj + q′i + q′j

)
, pia =

1

2
(3 − q′a − q̂′i + qi) (187)
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which we will refer to as “regularization weights” in reference to their origin from

the PV sector of the theory.

In (186) M0
a and A0

ilm are the tree level gaugino masses and A-terms given

in (173) and the parameters γ determine the chiral multiplet wave function renor-

malization

γj
i =

1

32π2

[
4δj

i

∑

a

g2
a(T 2

a )i
i − eK

∑

kl

WiklW
jkl

]
. (188)

We have implicitly made the approximation that generational mixing is unimpor-

tant and can be neglected in (186), and that motivates the definitions

γj
i ≈ γiδ

j
i , γi =

∑

jk

γjk
i +

∑

a

γa
i ,

γa
i =

g2
a

8π2
(T 2

a )i
i, γjk

i = − eK

32π2
(κiκjκk)−1 |Wijk|2 . (189)

The scalar masses are obtained similarly and take the form

(Mi)
2

= (M0
i )2 + γi

MM

9
− |FT |2

(t+ t̄)2


∑

a

γa
i pai +

∑

jk

γjk
i pjk




+




M

3


∑

a

γa
i M

0
a +

1

2

∑

jk

γjk
i A0

ijk


+ h.c.





+



F

TG2 (t, t̄)


∑

a

γa
i piaM

0
a +

1

2

∑

jk

γjk
i pjkA

0
jk


+ h.c.





− ln
[
(t+ t̄)|η(t)|4

]
{
∑

a

γa
i pia

[
3(M0

a)2 − (M0
i )2
]

+
∑

jk

γjk
i pjk

[
(M0

j )2 + (M0
k )2 + (A0

ijk)2
]




+
∑

a

γa
i

[
3(M0

a )2 − (M0
i )2
]
ln(µ2

pv
/µ2

R)

+
∑

jk

γjk
i

[
(M0

j )2 + (M0
k )2 + (A0

ijk)2
]
ln(µ2

pv
/µ2

R), (190)

with M0
i being the tree level scalar masses of (173).

To put these expressions into a less cumbersome and more suggestive form, we

will consider the case where the various regularization weights pia and pjk can be

treated as one overall parameter p. Then inserting the tree level soft terms (173)

into (186) and (190) yields

Aijk = −ks

3
FS − 1

3
γiM − pγiG2 (t, t̄)FT + γ̃iF

S
{
ln(µ2

pv
/µ2

R) − p ln
[
(t+ t̄)|η(t)|4

]}
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+cyclic(ijk) (191)

M2
i =

{ |M |2
9

− |FT |2
(t+ t̄)2

}
1 + pγi −


∑

a

γa
i − 2

∑

jk

γjk
i


(ln(µ2

pv
/µ2

R) − p ln
[
(t+ t̄)|η(t)|4

])



+(1 − p)γi
|M |2

9
+

{
γ̃i
MFS

6
+ h.c.

}
+

{
pγ̃iG2 (t, t̄)

F
T
FS

2
+ h.c.

}

+|FS |2



3

4

∑

a

γa
i g

4
a + ksks̄

∑

jk

γjk
i


(ln(µ2

pv
/µ2

R) − p ln
[
(t+ t̄)|η(t)|4

])

 , (192)

where γ̃i is a shorthand notation for

γ̃i =
∑

a

γa
i g

2
a − ks

∑

jk

γjk
i . (193)

The adoption of one overall regularization weight p makes it possible to identify the

quantity ln(µ2
pv
/µ2

R) − p ln
[
(t+ t̄)|η(t)|4

]
as a stringy threshold correction to the

overall PV mass scale, or effective cut-off, µpv.
137 Let us make this identification

explicit by defining

ln(µ2
pv
/µ2

R) − p ln
[
(t+ t̄)|η(t)|4

]
≡ ln(µ̃2

pv
/µ2

R) . (194)

Specializing further to the case of generalized dilaton domination we haveb

Ma =
g2

a (µR)

2

{
baM + [1 − b′aks]F

S
}

Aijk = −ks

3
FS − 1

3
γiM + γ̃iF

S ln(µ̃2
pv
/µ2

R) + cyclic(ijk)

M2
i =

|M |2
9


1 + γi −


∑

a

γa
i − 2

∑

jk

γjk
i


 ln(µ̃2

pv
/µ2

R)




+

{
γ̃i
MFS

6
+ h.c.

}
. (195)

3.4. Superpartner spectra and fine-tuning

With the expressions in (195) we now have a starting point for a discussion of the

phenomenological implications of the BGW class of models. Here we will pause

to look at some of the coarse features of the model, such as the general spectrum

of superpartner masses. This will begin with a consideration of the issue of elec-

troweak symmetry breaking and finish, ultimately, with the question of fine-tuning

in this model class. In Section 5 we will take a much more detailed look at certain

aspects of the model phenomenology, after we have considered how the supersym-

metry breaking pattern and spectrum can change in the presence of anomalous U(1)

factors in Section 4.

bWe have dropped terms of O
`

1/(16π2)3
´

in the scalar masses.
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First let us consider the issue of overall mass scales. Returning to the expression

in (176) we can see that we expect a suppression of gaugino masses relative to scalar

masses. This is a key feature of this class of models. It can be seen explicitly by

comparing (178) to m2
3/2 using (176), for which we obtain at tree level

∣∣∣∣
Ma

Mi

∣∣∣∣ =
√

3anp

(
ga(µR)

gstr

)2

. (196)

From the definition of anp in (175) it is clear that gaugino masses will be suppressed

by a loop factor relative to scalar masses. If the chargino mass must be of order

100 GeV or higher to avoid direct search constraints, this implies that the typical

size of scalars in this theory must be at least a few TeV. This model is therefore a

manifestation of “loop-split” supersymmetry.138 We will see below that this split-

ting is generally welcome phenomenologically, though it exacerbates certain other

problems. The first of these issues is electroweak symmetry breaking (EWSB).

To adequately describe the physical masses of the superpartners in this class

of theories it is necessary to consider how electroweak symmetry is broken. Dy-

namical breaking of the symmetry is possible is the context of the MSSM provided

(a) a large top Yukawa is present, (b) there is a large range of energies between

the scale of supersymmetry breaking and the electroweak scale, and (c) a super-

symmetric Higgs mass (or µ-term) can be generated of the appropriate size. All

conditions are compatible with the requirements and constraints of the BGW class

of models, but the physics of the resulting low-energy theory depends very much

on how condition (c) is obtained. For example, it can be demonstrated139 that if

the µ-parameter arises as a fundamental parameter in the superpotential and is

independent of the moduli, then it is extremely difficult to achieve EWSB and a

sufficiently large top quark mass in this class of theories. This is a result of the form

of the supersymmetry-breaking bilinear B-term, which takes the value B = 2m3/2

in this scenario.

Such a fundamental µ term generally would not arise from string theory, how-

ever, as the Higgs doublets are part of the massless spectrum of the theory. In-

stead we anticipate that the µ-parameter is dynamically generated, either via the

Giudice-Masiero mechanism132 or through the spontaneous breaking of certain ad-

ditional symmetries via the vev of some field which is neutral under the Standard

Model.140,141 In these cases the B-parameter may take a variety of values, depending

on the model. In particular, for the case of dynamical generation of the µ-parameter

via singlet vevs with Wµ = λX 〈X〉HuHd, the effective B-term is in fact a trilinear

A-term. The constraints on the model arising from electroweak symmetry breaking

are weaker in these more realistic cases.

For the sake of the present discussion, let us use the requirement of proper elec-

troweak symmetry breaking to determine the values of µ and B at the electroweak

scale in the usual manner. In other words, we compute the one-loop corrected effec-

tive potential V1−loop = Vtree + ∆Vrad at the electroweak scale and determine the
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Fig. 10. A typical constraint on tan β from the requirement of proper EWSB. The
maximum value of tan β consistent with EWSB and positive squark masses is displayed as a
function of the gravitino mass. For this figure we have taken b+ = 0.08 and (cα)eff = 1.

effective mu-term µ̄ via

µ̄2 =

(
m2

Hd
+ δm2

Hd

)
−
(
m2

Hu
+ δm2

Hu

)
tanβ

tan2 β − 1
− 1

2
M2

Z . (197)

In equation (197) the quantities δmHu
and δmHd

are the second derivatives of the

radiative corrections ∆Vrad with respect to the up-type and down-type Higgs scalar

fields, respectively. For the numerical results which follow we will include the effects

of all third-generation particles. If the right hand side of equation (197) is positive

then there exists some initial value of µ at the high-scale which results in correct

electroweak symmetry breaking with MZ = 91.187 GeV.

Though all scalar masses (including those of the two Higgs doublets) in the

BGW class will generally have large masses at the boundary condition scale, it is

well known142 that the Yukawa structure of the MSSM is such that the up-type

Higgs soft mass-squared m2
Hu

is typically driven to negative values nevertheless.

Dynamical EWSB is therefore robust in this model. However, the large scalars

induce large corrections δm2
Hu

and δm2
Hd

which can destabilize the EWSB minimum

and make µ̄2 < 0. The BGW model (with the GS coupling of the matter fields pi

in (116) taken to vanish) is therefore a “focus-point” model143 over most of its viable

parameter space. The various requirements outlined above tend to push the value

of tanβ required to solve (197) to small values. This is shown in Figure 10 for the

case of b+ = 0.08 and (cα)eff = 1 (which we will assume from here onwards). There
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is some mild dependence of the maximum value of tanβ on these parameters, as

well as on the choice of top quark pole mass assumed. Generally speaking, though,

tanβ <∼ 10 for most of the model parameter space.

Returning to the soft supersymmetry-breaking parameters, the relation (196)

implies that tree-level contributions to gaugino masses arising from the effective

dilaton auxiliary field
〈
FS
〉

will be of roughly the same size as those one-loop

corrections proportional to the gravitino mass. There is one unique contribution

proportional to the auxiliary field of supergravity, which is the first term in the

gaugino mass expression in (195). These terms imply a splitting in the gaugino

soft masses which will depend on the relative sizes of the beta-function coefficient

ba for the Standard Model gauge group Ga and that of the largest beta-function

coefficient b+ for the condensing product group. Such an outcome is not in conflict

with the possibility of gauge coupling unification in this theory. Schematically, the

gauge kinetic function in the superspace Lagrangian density is replaced at one loop

by the expression

L ∼
∫

d2θfa (WαWα)a →
∫

d2θ

(
S +

1

16π2
Xa

)
(WαWα)a , (198)

where both objects S and Xa obtain O(1) vevs for their lowest scalar components

(thereby producing only small corrections to gauge coupling unification). But only

Xa receives an O(1)m3/2 auxiliary field vev; for the auxiliary field of the dilaton

this auxiliary field vev is suppressed by a loop factor relative to the gravitino mass.

The scenario we have just described, with tree-level and loop-level contributions to

gaugino masses of about the same magnitude, has recently re-appeared in a number

of guises.144,145,146 Many of these examples have been engineered to provide (196),

and nonuniversal gaugino masses. In the BGW class of heterotic models it is an

automatic feature of Kähler stabilization. When this property arises many virtuous

phenomenological properties follow, which we will investigate below.

To study the parameter space of the BGW model it is inconvenient to work in the

space of hidden sector parameters
{
(cα)eff ,

(
bα+
)
eff
, b+
}

as this defines a very narrow

region in Figures 6, 7 and 8. But we note that the values of (cα)eff and (bαa )eff appear

only indirectly through the determination of the value of the condensate
〈
ρ2
+

〉

in (126). It is thus convenient to cast all soft supersymmetry-breaking parameters

in terms of the values of b+ and m3/2 using equation (137).147 While the gravitino

mass itself is not strictly independent of b+, it is clear from Figure 7 that we are

guaranteed of finding a reasonable set of values for
{
(cα)eff ,

(
bα+
)
eff

}
consistent

with the choice of b+ and m3/2 provided we scan only over values b+ <∼ 0.1 for weak

string coupling. This transformation of variables allows the slice of parameter space

represented by the contours of Figure 8 to be recast as a two-dimensional plane for

a given value of tanβ and sgn(µ).

In Figure 11 we thus exhibit the soft supersymmetry breaking parameters of (195)

as a function of condensing group beta-function coefficient b+. All masses are given

relative to the gravitino mass, and we have taken g2
str

= 0.5 and chosen µ̃2
pv

= µ2
uv

,
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Fig. 11. Spectrum of soft supersymmetry breaking terms in BGW model. All values
are given relative to the gravitino mass m3/2 at a scale µuv = 1 × 1014 GeV as a function of the
condensing group beta function coefficient b+.

where µuv is the boundary condition scale. All values tend to increase with b+ as

the relative size of
〈
FS
〉

to m3/2 increases. But note the importance of the ano-

maly contributions to gaugino masses in changing the relative sizes of the three

Standard Model gaugino mass parameters. The values of the one-loop soft terms

are sensitive to the choice of boundary condition scale through the logarithmic

terms ln(µ̃2
pv
/µ2

R) in the A-terms and scalar masses, and through the dependence

on the renormalized gauge couplings g2
a(µR) in the gaugino masses. This depen-

dence is most pronounced for the gaugino soft masses, but is milder in the regions

of phenomenological viability 0 ≤ b+ ≤ 0.09 established in Section 2.3.

This dependence is demonstrated in Figure 12, where we give the gaugino soft

masses as a function of b+ over the range 0 ≤ b+ ≤ 0.1 for two choices of boundary

condition scale µuv = 2 × 1016 GeV (solid lines) and µuv = 1 × 1014 GeV (dashed
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Fig. 12. Gaugino masses in the BGW model. Gaugino masses M1 (top), M2 and M3

(bottom) are given as a function of the condensing group beta function coefficient b+ at a scale
µuv = 2 × 1016 GeV (solid lines) and µuv = 1 × 1014 GeV (dashed lines).

lines). The convergence of gaugino masses as a function of b+ occurs at lower values

for lower boundary condition scales. But over the range of phenomenological interest

the hierarchy of gaugino masses is inverted relative to what occurs at low energies in

unified models such as the minimal supergravity model: the gluino mass M3 is the

smallest, with the B-ino mass M1 being the largest. Of course, these are statements

that hold at the boundary condition scale – what is of interest is the hierarchy of

gaugino masses at the low energy (electroweak) scale. Evolving the gaugino masses

to the electroweak scale using the two-loop RG equations18 the gluino increases

in mass, but remains lighter relative to the neutralino/chargino sector than in the

minimal supergravity model.

After evolving the gaugino masses M1 and M2 to the electroweak scale, and

imposing the electroweak symmetry breaking condition (197), we can compute the

physical neutralino and chargino masses. Over most of the allowed range in b+ the

B-ino is the lightest supersymmetric particle (LSP) – just as in minimal unified

models – but there will be a significant component of the SU(2) neutral W -ino in

the wavefunction of the LSP. In fact, when the condensing group beta-function co-

efficient b+ becomes relatively small (i.e. similar in size to the MSSM hypercharge

value of bU(1) = 0.028) the pieces of the gaugino mass arising from the supercon-

formal anomaly can become equal in magnitude to part arising from the dilaton

auxiliary field. Here there is a level crossing in the neutral gaugino sector. The LSP

becomes predominately W -ino like and the mass difference between the lightest

chargino and lightest neutralino becomes negligible. This effect is displayed in Fig-

ure 13. The phenomenology of the gaugino sector in this limit is similar to that of

the minimal anomaly-mediated supersymmetry breaking (AMSB) model.148,149,150
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Fig. 13. The physical gaugino sector of the BGW model. The left panel gives the mass
difference between the χ±

1 and the χ0
1 in GeV. The right panel gives the difference in mass between

the two lightest neutralinos χ0
2 and χ0

1. Note that a level crossing occurs and there exists a region
in which the W -ino W0 becomes the LSP.

One other important implication of the hierarchy in Figure 11 is the issue of

fine-tuning in the electroweak sector. A widely held rule of thumb about fine-tuning

states that it generally increases with the scale of the mass of squarks and sleptons.

But this is only roughly true. Consider the tree-level analog of the EWSB condition

in (197). This tree level relation can, in turn, be written in the following way151

M2
Z =

∑

i

Cim
2
i (uv) +

∑

ij

Cijmi(uv)mj(uv) , (199)

where mi represents a generic parameter of the softly broken supersymmetric La-

grangian at an initial high scale µuv with mass dimension one, such as gaugino

masses, scalar masses, trilinear A-terms and the µ parameter. The coefficients

Ci and Cij depend on the scale µuv and quantities such as the top mass and

tanβ in a calculable way through solving the renormalization group equations.

For example, taking the running mass for the top quark at the Z-mass scale to

be mtop(MZ) = 170 GeV, the starting scale to be the grand-unified scale, and

tanβ = 5 we have for the leading terms in (199)152

M2
Z = −1.8µ2(uv) + 5.9M2

3 (uv) − 0.4M2
2 (uv) − 1.2m2

HU
(uv)

+0.9m2
Q3

(uv) + 0.7m2
U3

(uv) − 0.6At(uv)M3(uv)

−0.1At(uv)M2(uv) + 0.2A2
t (uv) + 0.4M2(uv)M3(uv) + . . . (200)

where the ellipsis in (200) indicate terms that are less important quantitatively and

for our purposes. Note that the most important parameter is, in fact, the gluino

mass as evidenced by the large value of C3. In contrast, the scalar masses are far

less important. Indeed, replacing the scalars with a universal value m0 the relation
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in (200) becomes

M2
Z = −1.8µ2(uv) + 0.4m2

0 + 5.9M2
3 − 0.4M2

2 + . . . . (201)

Thus, models in which gluinos are light relative to the electroweak gauginos are

more likely to provide the needed cancelation of soft parameters against the su-

persymmetric mass term (µ) with a minimum of fine-tuning required. This feature

was the driving motivation for the models of Ref. 145, which led to construction of

effective theories very similar to the BGW model. We will pursue other phenomeno-

logical implications of the model in Section 5, but first we must consider how the

pattern of soft supersymmetry breaking can change when the model contains an

anomalous U(1)X factor.

4. Inclusion of anomalous U(1)’s

An anomalous U(1), commonly denoted U(1)X , is generic to effective supergravity

in string theory. For example the study113 of a large class of standard-like heterotic

Z3 orbifold models showed that 168 of 175 models had an anomalous U(1)X . The

underlying theory is anomaly free, and the apparent anomaly is canceled153,154,155

by a four-dimensional version of the Green-Schwarz term similar to the one in (102)

used to cancel the modular anomaly. This leads to a Fayet-Illiopoulos (FI) term in

the effective supergravity Lagrangian. Ignoring nonperturbative corrections to the

dilaton Kähler potential, the D-term for U(1)X takes the forma

DX = −2

(
∑

A

KAq
X
A φ

A + ξ

)
, KA =

∂K

∂φA
ξ =

g2
str

TrQX

192π2
m2

pl
, (202)

where K is the Kähler potential, qX
A is the U(1)X charge of the (complex) scalar

matter field φA, ξ is the FI term, QX is the charge generator of U(1)X , gstr is the

gauge coupling at the string scale, and mpl = 1/
√

8πG = 2.44 × 1018 GeV is the

reduced Planck mass that we set to unity in the remainder of this section. Provided

there are D-flat and F -flat directions, which is also generically the case, some num-

ber n of fields φA acquire vevs that break some numberm ≤ n of gauge symmetries.

The corresponding gauge supermultiplets get masses through the supersymmetric

generalization of the Higgs mechanism, but local supersymmetry remains unbroken.

In renormalizable globally supersymmetric gauge theories with a spontaneously

broken gauge theory, the associated vector multiplet “eats” a chiral and antichiral

aIn this section there will be a growing number of “species” indices with which the reader must be
concerned. To minimize future confusion, we here summarize the index conventions. In this section
we will label generic chiral superfields with capital Latin indices (as opposed to the lower-case
indices of the previous sections). Gauge groups are labeled by lower-case Latin indices from the
beginning of the alphabet. At times it will be convenient to single-out an anomalous U(1) factor
for which the label a will be replaced with X. Matter condensates continue to be labeled by Greek
letters and internal complex planes/Kähler moduli by the capital index I. Repeated indices do
not imply summation – all index summations will be explicitly shown.
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supermultiplet to form a massive vector supermultiplet. When these are integrated

out, the effective theory below the gauge symmetry breaking scale retains manifest

global supersymmetry. In the case of supergravity, we can maintain manifest local

supersymmetry by promoting156 the condition

DX = 0 (203)

to a superfield condition of which (203) is the lowest component. In effective super-

gravity from string theory, the chiral supermultiplets that get vevs have modular

weights, while the vector fields are modular invariant. On the other hand the con-

dition (203) does not break T-duality; it fixes the vevs of a linear combination of

the invariant fields
∑

AKAφ
A. Maintaining manifest T-duality in the effective the-

ory below the U(1)X breaking scale requires a generalization156 of the usual gauge

transformation used to remove the unphysical chiral superfields to go to unitary

gauge. Finally, in supergravity from string theory, the parameter ξ in (202) is not a

constant; in the classical limit g2
str

= 〈1/Re s〉 should be replaced by the dynamical

variable 1/Re s. In other words, the scalar components of the eaten chiral multi-

plets acquire vevs that are functions of the dilaton and the Kähler moduli which

themselves remain massless and are not stabilized at the scale of U(1)X breaking.

When the massive modes are integrated out in a way that preserves manifest local

supergravity and T-duality, the Kähler potential of the light matter fields that are

charged under the broken gauge symmetries is modified. In particular their modular

weights are shifted in a manner which depends on their charges under the broken

gauge group. In addition the GS term (102) that cancels the modular anomaly is

modified in a parallel manner such that modular anomaly cancelation is also mani-

fest in the effective theory below the gauge symmetry breaking scale. The modified

modular weights provide interesting possibilities for generating a source for the R-

parity of the MSSM – or an even more restrictive discrete symmetry – that will be

described in Section 5.

When supersymmetry is broken by condensation in a strongly coupled hidden

gauge sector with group Gc, dilaton stabilization is assured by the presence of D-

terms – in contrast to the models without an anomalous U(1) considered in Section 3

– but corrections to the dilaton Kähler potential are still needed to stabilize the

dilaton at weak coupling. Several promising features of the previous models persist:

enhancement of the dilaton and T-moduli masses relative to the gravitino mass,

masslessness of the universal axion, and dilaton-mediated supersymmetry breaking

that avoids potential problems with flavor changing neutral currents. However there

are some challenges to be overcome in finding a viable scenario with an anomalous

U(1)X .

There is generally a large degeneracy of the vacuum associated with U(1)

breaking,157,156 resulting in many massless chiral multiplets, or “D-moduli,” be-

tween the U(1)-breaking and supersymmetry-breaking scales. Moreover, in the ab-

sence of superpotential couplings a number of these remain massless even after

supersymmetry breaking. It turns out that couplings of the D-moduli to the mat-
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ter condensates in the superpotential are sufficient to lift the degeneracy and give

masses to the real parts of the D-moduli scalars as well as the fermions, while the

imaginary parts of the scalars (“D-axions”) remain massless in the absence of other

superpotential couplings. This remaining degeneracy may be at least partially lifted

by D-moduli couplings to other unconfined, Gc-neutral chiral supermultiplets.

As has been noted by a number of authors,158,159,160,161,55 that there is consid-

erable tension in maintaining a vanishing cosmological constant, a positive dilaton

metric and positive and acceptably small scalar masses in the observable sector on

the one hand, while requiring weak coupling and acceptably large D-moduli/fermion

masses on the other hand.

In Section 4.1 we illustrate the procedure for integrating out the massive vector

supermultiplet while preserving manifest local supersymmetry and T-duality in

the lower energy effective theory using a toy model156 with just one broken gauge

symmetry, U(1)X , and just one complex scalar vev; in Section 4.2 we include hidden

sector gaugino condensation in this toy model. Since the linear multiplet formalism

for the dilaton is by far better suited to addressing these questions, we will use it

in these two sections, and impose further that the modified linearity condition (42)

remain true in the effective theory below the U(1)X breaking scale. The cases with

any number m of broken U(1)’s and n ≥ m scalar vevs have been worked out in

detail;162,55 here we simply state the results. In Section 4.3 we discuss the vacuum

and the moduli sector, and in Sections 4.4 and 4.5 we address observable sector and

D-moduli masses, respectively, and discuss the requirements for a viable model.

4.1. The effective theory below the U(1)X breaking scale: a toy

model

When an anomalous U(1)X is present, the effective Lagrangian at the string scale

is defined by

L = LKE + LGS + Lth +
∑

a

La, (204)

where Lth is the string loop threshold correction given in (105). It is convenient

here to write the kinetic term (61) in the form

LKE =

∫
d4θ E [−3 + Ls(L)] , (205)

such that the first term contains the usual gravity and matter kinetic terms of

Kähler U(1) superspace, and the second term, with 2Ls(L) = 1 + f(L), includes

the gauge kinetic term of the more conventional supergravity formulation, with the

vacuum value

〈s(ℓ)〉 = g−2
str

(206)
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determining the gauge coupling gstr at the string scale.b The GS term (102) now

includes the FI term:

Lgs =

∫
d4θ EL (bG− δXVX) , (207)

where VX is the U(1)X vector superfield, G is defined byc

G =
∑

I

gI , gI = − ln(T I + T
I
) . (208)

The two parameters in (207) are the coefficient b, identified with bgs of equa-

tion (102), and

δX = − 1

48π2
TrQX = − 1

2π2

∑

A

CA
a6=X qX

A = − 1

6π2
TrQ3

X , (209)

where the last two equalities are constraints on the gauge charges of the spectrum

that follow from the fact that the underlying string theory is anomaly free. The

field theoretic quantum corrections La take the form

La = −
∫
d4θ

E

8R
Wα

a PχBaW
a
α + h.c. , (210)

Ba(L, VX , g
I) =

∑

I

(b − bIa)gI − δXVX + fa(L) . (211)

The full Kähler potential is

K = k(L) +G+
∑

A

eGA+2qX
A VX |ΦA|2 + O(|ΦA|3) ,

k(L) = lnL+ g(L), GA ≡
∑

I

qI
A g

I , (212)

where qX
A and qI

A are U(1)X charges and modular weights, respectively. Up until

now we have been working in Kähler U(1) and Yang-Mills superspace, in which

the Yang-Mills vector fields do not appear explicitly and chiral superfields are co-

variantly chiral, with the gauge connections implicit in all covariant derivatives.

When there is an anomalous U(1) the vector field appears explicitly in the GS term

needed to cancel the anomaly. The vector field must also be introduced explicitly

for the supersymmetric regularization135 of ultraviolet divergences associated with

an anomalous U(1), which accounts for its appearance in the expression (211).

When a gauge symmetry is broken, and the associated vector multiplet acquires

a large mass, it is appropriate to remove its gauge connection from the covariant

derivatives. In this case the vector field appears explicitly in the Kähler potential

bIn the dual chiral formulation for the dilaton 2s(L) → S + S̄ − bG + VXδx.
cIn this section, for simplicity, we set the parameters pA introduced as pi’s in (116) to zero, as was
done in Ref. 55. We comment on the case with pA 6= 0 in Section 4.4. These parameters should not
be confused with the similarly labeled parameters introduced in (187) above, nor those in (300)
below.
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as in (212), and the heavy degrees of freedom can easily be integrated out at the

superfield level, as we outline below.

Suppose that a chiral multiplet Φ with U(1)X charge q and modular weight qI

acquires a vev. Setting all other matter fields to zero, the Kähler potential (212)

reduces to

K = k(L) +G+ eGq+2qVX |Φ|2, Gq =
∑

I

qIgI , (213)

and (in Wess-Zumino gauge) the D-term (202) is given by

DX = −2

s

(
qeGq(t)|φ|2 − ℓδX

2

)
, (214)

which vanishes at the minimum of the potential if φ 6= 0 is a flat direction. Since

the scalar component φ of Φ must get a vev to cancel the FI term, it is consistent

to write φ = eθ, where θ is a complex scalar field. Promoting this to a superfield

expression, we define a chiral superfield Θ such that

Φ = eΘ . (215)

The Lagrangian is invariant under U(1)X gauge transformations

VX → V ′
X = VX +

1

2

(
Λ + Λ

)
, ΦA → Φ′A = e−qX

A ΛΦA , (216)

where Λ is a chiral supermultiplet, so we can remove the chiral supermultiplet Θ

by a gauge transformation with Λ = Θ/q:

VX → V ′ = VX +
1

2q

(
Θ + Θ

)
, Φ → Φ′ = e−ΘΦ = 1 , (217)

The field V ′ describes a massive vector multiplet with the same number of compo-

nents as a massless vector multiplet and a (complex) chiral multiplet, and gauge

invariance assures that

L
(
VX ,Φ,Φ

)
→ L (V ′, 1, 1) . (218)

The expressions for K and L become

K = k(L) +G+ eGq+2qV ′

, (219)

L =

∫
d4θE [−3 + 2Ls(L) + L(bG− δXV

′)] + Lth +
∑

a

La. (220)

But note the important property that Θ – and therefore V ′ – is not invariant

under modular transformations defined by (76) and (84):

V ′ → V ′ − 1

2q

∑

I

qI
(
F I + F

I
)

; F I = ln(icT I + d) . (221)

In order to integrate out the heavy degrees of freedom in a way that preserves

the unbroken symmetries, therefore, we promote the vacuum condition (203) to a

superfield condition. That is, we require that the superfield

q eGq(T )+2qV ′ − δX
2
L , (222)
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which is modular invariant, vanish in the vacuum. To this end we introduce a vector

superfield U with vanishing vev (i.e. all component fields are defined to vanish in

the vacuum) such that this condition is maintained

q eGq+2qV ′

= e2qU δX
2
L , 〈U〉 = 0 . (223)

This corresponds to the redefinition

V ′ = U +
1

2q

(
ln
δXL

2q
−Gq

)
. (224)

In terms of the new set of independent fields (L, U, T I), the Kähler potential and

the Lagrangian take the form

K = k(L) +G+ e2qU δXL

2q
≡ K(L,U) +G , (225)

LKE + LGS =

∫
d4θE

[
−3 + 2Ls(L) + L

(
bG− δXU − δX

2q
ln
δXL

2q
+
δX
2q
Gq

)]

≡
∫

d4θE

[
−3 + 2LS(L,U) + L

∑

I

bIgI

]
, (226)

where we have introduced the new coefficient

bI = b+
δX
2q
qI . (227)

When the superfield U is set to zero, the net effect is a modification of the

functions k(L) and s(L) which are subject to the constraint (62), or, equivalently

k′(L) + 2Ls′(L) = 0 . (228)

These are now replaced by the functions

k̃(L) = K(L, 0) = k(L) +
δX
2q

L , s̃ = S(L, 0) = s(L) − δX
4q

ln

(
δXL

2q

)
, (229)

that satisfy

k̃′(L) + 2Ls̃′(L) = k′(L) + 2Ls′(L) = 0 , (230)

and the Einstein-Hilbert term remains canonically normalized. This is not the case,

however, for U 6= 0. Moreover, there are terms linear in U that contribute to

the tree-level action that must be taken into account. This can be done while

maintaining 〈U〉 = 0 by a redefinition of L, but an arbitrary redefinition would

destroy the modified linearity condition (42) that we wish to maintain below the

U(1)X breaking scale. This can be achieved by a superfield Weyl transformation33

that leaves the product E L invariant but modifies the Kähler potential:

K(L,U) = K̂ + ∆k, E = e−∆k/3Ê, L = e∆k/3L̂ ,

2L̂ Ŝ(L̂, U) = 2L̂ S(L,U) + 3
(
1 − e−∆k/3

)
. (231)
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The condition for a canonical Einstein term in the new Weyl basis is

0 =

(
∂K̂

∂L̂

)

U

+ 2L̂

(
∂Ŝ

∂L̂

)

U

, (232)

where the subscript on derivatives indicates that U is held fixed. The L̂ derivatives

of ∆k drop out except in an overall factor ∂L/∂L̂, giving the condition

L− L̂ = L̂
(
e∆k/3 − 1

)
= L2K

′(L) + 2LS′(L)

3 + 2L2 S′(L)

= L2 δX
(
e2qU − 1

)

2q
[
3 − Lk̃′(L)

] =
δXL

2 U

3 − L k̃′(L)
+ O(U2)

=
δX L̂

2U

3 − L̂ k̃′(L̂)
+ O(U2) . (233)

We may then expand the expressions

K̂(L̂) = k̃(L) +
δX
2q
L
(
e2qU − 1

)
− ∆k,

Ŝ(L̂) = s̃(L) +
3

2LL̂

(
L− L̂

)
− δX

2
U , (234)

in powers of U . This gives

∆k = 3(L− L̂)/L̂+ O(U2), k̃(L) = k̃(L̂) + (L − L̂)k̃′(L̂) + O(U2),

s̃(L) = s̃(L̂) + (L− L̂)s̃′(L̂) + O(U2) , (235)

and, using (230), the terms linear in U drop out of (234). This means that we can

just set U = 0 to get the effective low energy theory in the hatted basis that has a

canonical Einstein-Hilbert term.d

Once the heavy modes have been integrated out, the Lagrangian takes the

form (204) with

LKE =

∫
d4θ E [−3 + L s̃(L)] , (236)

LGS =

∫
d4θ EL

∑

I

bIgI , (237)

and the operator Ba in (211) becomes

Ba(L, VX , g
I) =

∑

I

(bI − bIa)gI + f̃a(L) , f̃a(L) = fa(L) − 1

2q
ln
δXL

2q
. (238)

The shift in fa exactly cancels the effect of the shift (229) in s on the kinetic terms

for the Yang-Mills fields of the unbroken gauge group, so the coupling is the same

dThe terms quadratic in the U(1)X field strengths W α
V = W α

V ′ generate terms linear in W α
U ; these

involve couplings to the chiral projections of spinorial derivatives of the moduli.163 They do not
contribute to the potential as long as supersymmetry is unbroken; see (244) below.
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as the string scale coupling (206), but the dilaton kinetic energy term is modified

below the U(1) breaking scale. The shift b → bI matches that in LGS so that the

anomaly is still canceled. The shift in La precisely corresponds to the shift in the

metric for matter fields that occurs when the change in variables (224) is made.

The Kähler potential is now

K = k̃(L) +G+
∑

A

eG′
A

(
δXL

2q

)qX
A /q

|Φ′
A|2,

G′
A =

∑

I

(
qI
A − qX

A

q
qI

)
gI ≡

∑

I

q′IAg
I , (239)

where it is convenient to define the new “effective” modular weight

q′IA = qI
A − qX

A

q
qI . (240)

The modified Kähler metric implies a modification of the fermion connections that

induce a shift in the functions Ba; using (209),

δBa =
1

4π2

∑

A

CA
a

qX
A

q

(
ln
δX
2q

−
∑

I

qIgI

)
=
δX
2q

(
ln
δX
2q

−
∑

I

qIgI

)
, (241)

giving the correction to (211) that appears in (238). These modifications of the

effective theory can have consequences for phenomenology.

Finally, the right hand side of the modified linearity condition (42) contains the

term (WαWα)V where

Wα
V = −1

4
(D2 − 8R)DαV = −1

4
(D2 − 8R)DαV ′

= −1

4
(D2 − 8R)DαU − 1

8q
(D2 − 8R)

(DαL

L
−DαGq

)

= Wα
U − 1

8q
(D2 − 8R)

(DαL

L
−DαGq

)
. (242)

In the hatted basis defined by the Weyl transformation (231), (242) reads

Wα
V =

(
1 +

1

2qL(L̂, U)

∂L(L̂, U)

∂U

)
Wα

U +W ′α, (243)

∫
d4θ

E

R
(WαWα)V =

∫
d4θ

E

R
(WαWα)U



(

1 +
δX L̂

2q(3 − L̂k̃′(L̂)

)2

+O(U)




+ · · · , (244)

where the ellipsis represents terms involving W ′α that are quartic in auxiliary fields

and/or derivatives. This implies a renormalization of the U wave function such that
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its mass is given by156

m2
U =

1

s(ℓ̂)

(
1 +

δX L̂

2q(3 − L̂k̃′(L̂)

)−2
∂2K̃(L̂, U)

∂U2

∣∣∣∣∣∣
U=0,bL=〈ℓ̂〉

=

(
1 +

δX〈ℓ̂〉
2q(3 − 〈ℓ̂〉k̃′(〈ℓ̂〉)

)−1
qδX〈ℓ̂〉
s〈ℓ̂〉

, (245)

where

K̃ = K̂ + 2L̂Ŝ (246)

is the “effective” Kähler potential.

4.2. The effective theory below the condensation scale: a toy model

Here we consider the case where the toy model described in Section 4.1 has a

strongly-coupled gauge group Gc in a hidden sector. The effective Lagrangian for

the condensates (20) and (23) can be constructed by anomaly matching as described

in Section 2. The strongly coupled Yang-Mills sector also possesses a residual global

U(1)X invariance that is broken only by superpotential couplings that involve the

chiral superfield Φ that gets a vev at the U(1)X-breaking scale.e These couplings

enter the RGE for the Gc gauge coupling only through chiral field wave function

renormalization, which is a two-loop effect that is encoded in the expression (126)

for the gaugino condensate through the appearance of the superpotential coefficients

Wα as discussed in Section 2.3. We therefore impose the U(1)X anomaly matching

condition
∑

α,B

bαc n
B
α q

a
B =

∑

B

CB
c

4π2
qa
B = −1

2
δXδ

a
X , (247)

which is also satisfied by (26). Note that in the last expression of (247) the quantity

δX is the GS coefficient from (207) while δa
X is a Kronecker delta function which

enforces U(1)a = U(1)X . The condensate superpotential now takes the form

W (Π) =
∑

α

Wα(T I ,Φ)Πα , (248)

where T-duality and U(1)X invariance require

Wα(T I ,Φ) = cα
∏

I

[ η(tI)]2(q′I
α −1)φ−qX

α /q , (249)

with q′Iα defined as in (240) for the matter condensate Πα.

When supersymmetry is broken by condensation, we can no longer assume a

priori that 〈DX〉 = 0, and an F -term associated with the chiral field that gets a

eSome of these coupling could generate masses for a subset of fields that are charged under Gc;
we will comment on that case at the end of this section.
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vev may also be generated. To include these we modify the field redefinitions (217)

and (224) as follows:

Φ′ = e−Θ+∆ΦΦ = e∆Φ , V ′ = U +
1

2q

(
ln
δXL

2q
−Gq

)
+ ∆X , (250)

with V ′ defined as in (217). The objects ∆X and ∆Φ are constant vector and

chiral superfields, respectively, with vanishing fermionic components. We can make

a U(1)X gauge transformation with a constant chiral superfield Λ to eliminate the

scalar and auxiliary components from ∆X , which just redefines the corresponding

components of ∆Φ:

0 = ∆X | = −1

4
D2∆X

∣∣ , DX =
1

8
Dα
(
D

2 − 8R
)
Dα∆X

∣∣∣ ,

δ = ∆Φ| , F = −1

4
D2∆Φ

∣∣ , (251)

and we take

〈U〉 = 0 (252)

as before. However we cannot set U = 0 before taking into account linear couplings

of U that arise in the presence of the supersymmetry-breaking vevs (251), the

matter fields ΦM and the now nonvanishing auxiliary fields represented by the

ellipsis in (244). As before, we go to the basis where the Einstein-Hilbert term is

canonical, starting with the Lagrangian defined by

K = k(L) +G+ e2q(∆X+U)+∆Φ+∆Φ
δXL

2q
+
∑

A

eG′
A

(
δXL

2q

)qX
A /q

|Φ′
A|2

≡ K(L,M,U) +G, (253)

LKE + LGS =

∫
d4θE

[
−3 + 2Ls(L) + L

(
bG− δX(∆X + U) − δX

2q
ln
δXL

2q
+
δX
2q
Gq

)]

≡
∫

d4θE

[
−3 + 2LS(L,M,U) + L

∑

I

bIgI

]
, (254)

where now

K(L,M,U) = k̃(L) +
δXL

2q

(
e2q(∆X+U)+∆Φ+∆Φ − 1

)
+
∑

A

xA, M = ∆,Φ, T,

S(L,M,U) = s̃(L) − δX(U + ∆X) xA = eG′
A

(
δXL

2q

)qX
A /q

|Φ′
A|2 . (255)

We make the superfield Weyl transformation (231) and impose the condition (232)

with U → U,M held fixed in (232) to obtain

L− L̂ = L2




δX

(
e2q(∆X+U)+∆Φ+∆Φ − 1

)
+ 2q

∑
A x

′A

2q
[
3 − L k̃′(L)

]



 . (256)
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The functions K̂(L̂,M,U) and Ŝ(L̂,M,U) can be expanded as before to obtain

the component Lagrangian which now includes F -terms for Φ,ΦM and the U(1)X

D-term. Here we will just describe the modifications with respect to the BGW case

of Section 3.

The couplings of Φ in the condensate superpotential (248) introduce additional

parameters in the potential. We define

pI = −q
I

q

∑

α

bαc q
X
α ≡ p qI p = −1

q

∑

α

bαc q
X
α . (257)

In this toy model it follows from the U(1)X anomaly matching condition (247) that

pI = bI − b, p =
δX
2q

. (258)

Neglecting corrections of order ∆, the vev of |φ|2 is given by

〈
|φ|2

〉
= e−

P

I qIgI−2qVX
δXℓ

2q
= p ℓ e−

P

I pIgI−2qVX > 0 , (259)

so p and pI are positive since the modular weights, as defined here, are generally

positive.f Once the matter condensates have been eliminated by the equations of

motion for their auxiliary fields, the equation of motion for the condensate auxiliary

field F c determines |uc|2; in particular there is a factor

∏

α

|Wα|2bα
c /bc . (260)

The relation (258) holds for the pI defined in (257) in terms of the original modular

weights at the string scale, in which case

∑

α

bαc q
I
α =

∑

B

bαc n
B
α q

I
B =

∑

B

CB
c

4π2
qI
B = b− b′c − bIc ,

∑

α

bαc = bc − b′c, (261)

giving
∑

α

bαc
(
q′Iα − 1

)
= bI − bc − bIc , (262)

which is just what one would have gotten using the modular weights obtained in

unitary gauge with q′ = 0. Now setting φ→ φ′ = 1 in unitary gauge and proceeding

as in Section 3, we obtaing

ūcuc = e−2b′c/bceκ−2bS/bc

∏

α

∣∣∣∣
bαc
4cα

∣∣∣∣
−2bα

c /bc ∏

I

[
2Re tI |η(tI)|4

](bI−bc)/bc
+ O(δ), (263)

fA rare exception to this statement can be found in Ref. 89.
gThere are some errors in (3.33)–(3.39) of Ref. 55.
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where κ = K̂ −G is the modular invariant part of the Kähler potential in the new

basis. The Kähler moduli F -terms are now given by

F I = − 2Re tI

1 + bI ℓ̂

ū

4

(
bc − bI

) [
1 + 4Re tI ¯ζ(tI)

]
. (264)

Note that the exponential factor in (263) contains Ŝ = s̃+O(∆). When re-expressed

in terms of the actual string coupling that expression acquires a factor

e2(s−s̃)/bc = (p ℓ)p/bc , (265)

which, in the weak coupling limit with p ℓ << 1, amounts to a decrease in the scale

of supersymmetry breaking, allowing for somewhat larger values of bc.

To incorporate the effects of terms linear in U we need to retain terms quadratic

in the components of U in the Lagrangian. Referring to (243) we have

DV = −1

2
DαWV

α

∣∣∣∣
θ=θ̄=0

= −1

2
Dα

[(
1 +

1

2qL(L̂, U,M)

∂L(L̂, U,M)

∂U

)
WU

α +W ′
α

] ∣∣∣∣
θ=θ̄=0

=

[
1 +

1

2qℓ(ℓ̂, u,m)

∂ℓ(ℓ̂, u.m)

∂u

]
D +D′, u = U |θ=θ̄=0 m = M |θ=θ̄=0, (266)

where the bosonic, nonderivative part of D′ is quadratic in auxiliary fields:

D′ ∼ |uc|2, (267)

since the vev uc of the hidden sector gaugino condensate sets the scale of super-

symmetry breaking. The part of the Lagrangian that contains the auxiliary fields

D is

L(D) =
s(ℓ̂)

2
D2

V +D
∂K̃

∂D
= −V (D) . (268)

Eliminating D by its equation of motion gives

V (D) =
1

2s(ℓ̂)

[
A2(ℓ̂, u,m) + 2s(ℓ̂)A(ℓ̂, u,m)D′

]

=
1

2s(ℓ̂)

[
A(ℓ̂, u,m) + s(ℓ̂)D′

]2
− s(ℓ̂)

2
D′2, (269)

A(ℓ̂, u,m) =

(
1 +

1

2qℓ(ℓ̂, u,m)

∂ℓ(ℓ̂, u,m)

∂u

)−1
∂K̃

∂D
. (270)

The last term in (269) is O(|uc|4) and we may ignore it. Expanding

A(ℓ̂, u,m) + s(ℓ̂)D′ = A0(ℓ̂,m) + uA1(ℓ̂,m) + u2A2(ℓ̂,m) , (271)

we note that A0 is the u-independent part of A + sD′ = A+ O(|uc|2). But K̃ has

no term linear in U when we neglect ǫ ≡ δ, xm. So ∂A/∂u ∼ ǫ, u and A0 ∼ ǫ, |uc|2,
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giving

V (D) =
1

2s(ℓ̂)

[
A0 +A1u+A2u

2
]2

+ O(|uc|4)

=
1

2s(ℓ̂)

(
A2

0 + 2A0A1u+ [A2
1 +O(ǫ, |u2

c |)]u2
)

+ O(|uc|4) . (272)

When order ǫ terms are included, in addition to the ǫ-dependence of κ = K̂ − G

and Ŝ, the expression (263) contains a factor

e−(δ+δ̄)
P

α bα
c qX

α /q bc = e(δ+δ̄)p/bc , (273)

and the F -component of Φ′ is given by55

F = − ū
4

(
∂K̃

∂δ∂δ̄

)−1 [
2
∂Ŝ

∂δ̄
− p− bc

∂K̂

∂δ̄

]
, (274)

where the derivatives are taken with ℓ̂ held fixed.

In this toy model, F is of order δ. To see this, write

2
∂Ŝ

∂δ̄
− p− bc

∂K̂

∂δ̄
= 2

(
1 + bcℓ̂

) ∂Ŝ
∂δ̄

− p− bc
∂K̃

∂δ̄
(275)

Taking the lowest component of the relation
(
∂K̃

∂∆

)

bL

=

(
∂K

∂∆

)

L

+ 2L̂

(
∂S

∂∆

)

L

, (276)

that follows55 from (232) with U → ∆, gives
(
∂K̃

∂δ̄

)

ℓ̂

=

(
∂K

∂δ̄

)

ℓ

= p ℓ [1 + O(δ, u)] = pℓ̂+ O(ǫ, u) . (277)

The derivatives of the lowest component of (256) satisfy55

∂ℓ

∂δ̄
=
∂ℓ

∂ℓ̂

p ℓ2

3 − ℓk̃′(ℓ)
[1 +O(δ, u)] =

p ℓ2

3 − ℓk̃′(ℓ)
+ O(ǫ, u) , (278)

and, referring to (230) and (234),

∂Ŝ

∂δ̄
=
∂ℓ

∂δ̄

(
s̃′(ℓ) +

3

2ℓ2

)
=

1

2
p + O(ǫ, u), (279)

so the expression in (275) is of order ǫ, u.

The full potential is given by

V = V (D) +
|u|2
16

v(ℓ̂, ǫ, u) +

(
∂K̃

∂δ∂δ̄

)−1

FF +
∑

I

1 + bI ℓ̂

(tI + t̄I)2
F

I
F I , (280)

with

∂K̃

∂δ∂δ̄
= p

(
ℓ+

∂ℓ

∂δ̄

)
[1 +O(δ, u)] , (281)
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and the function

v(ℓ̂, ǫ, u) =
∂ℓ̂K̂

ℓ̂
(1 + bcℓ̂)

2 − 3b2c (282)

is the same as in the BGW case with the replacement k → K̂. It follows immediately

from (246), (277) and (278) that ∂K̂/∂δ is of order ǫ, u, that is, K̂(ℓ̂,m, u) =

k̃(ℓ̂) + O(xM , δǫ, uǫ, u2). This is just a consequence of the fact that ∆ appears in

K̂ in a linear combination with U + ∆X , and as shown in Section 4.1 there is

no term linear in U → U + ∆X in either K̂ or Ŝ. Ŝ contains a term linear in ∆

that is independent of L̂, so all terms linear in ∆ and U + ∆X drop out of the

condition (276). Expanding the potential in powers of u, it takes the form

V = V0(ℓ̂,m) + V1(ℓ̂,m)u+ V2(ℓ̂,m)u2 + O(u3), (283)

where V1 and V2 are dominated by the D-term contribution (272):

V1 =
1

s(ℓ̂)
A0A1 + O(ǫ|uc|2) ∼ ǫ, V2 =

1

2s(ℓ̂)
A2

1 + O(ǫ, |uc|2) ∼ 1. (284)

When rewritten in terms of the canonically normalized scalar v, which, to leading

order, is related to u by the normalization factor found in (244), the potential (283)

takes the form

V = V0(ℓ̂,m) +
1√
s(ℓ̂)

[
A0mU + O(ǫ|uc|2)

]
v +

1

2

[
m2

U + O(ǫ, |uc|2)
]
v2 + O(|uc|4)

= V0(ℓ̂,m) − 1

2s(ℓ̂)
A2

0 +
1

2

[
m2

U + O(ǫ, |uc|2)
]
v′2 (285)

v′ = v +
A0√
s(ℓ̂)mU

[
1 + O(ǫ, |uc|2)

]
+ O(ǫ|uc|2) + O(|uc|4), (286)

where m2
U is given in (245). The potential that results from integrating out u at

tree level is obtained by setting v′ = 0 in (285). The term proportional to A2
0,

which includes the conventional D-term, cancels out and the potential V (ℓ,m) and

is just given by the last three terms in (280) evaluated at u = 0, up to order |uc|4
corrections. At the vacuum where 〈xM 〉 = 〈F I〉 = 0,

V (ℓ̂, δ) =
|uc|2
16

[
v(ℓ̂) + v1(ℓ̂)δ

2
]

+ O(|uc|4), (287)

and minimization of the potential with respect to δ gives δ ∼ |uc|2, so the potential

for ℓ̂ is just the BGW potential v(ℓ̂) up to order |uc|4 corrections.

In more realistic models with n scalar vevs and m ≤ n broken U(1)’s, the

functions introduced in (255) are replaced by

K(L,M,U) = k̃(L) +
∑

A

kA(L)
(
e∆ΘA

+∆ΘA
+2

P

a qa
A(Ua+∆a) − 1

)
+
∑

M

xM ,

S(L,M,U) = s̃(L) − δX (UX + ∆X) . (288)
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The functions

kA = |CA|2 e2
P

a qa
Aha(L) (289)

are the modular invariant vevs generated at the U(1)X breaking scale, with ha the

L-dependent part of the shifts in the U(1)a vector superfields analogous to (250).

The kA are subject to the constraints

2q
∑

A

qa
Ak

A = δa
XδXL , (290)

that ensures vanishing D-terms and unbroken supersymmetry at that scale. It also

ensures that the functions

k̃(L) = k(t) +
∑

A

kA(L), s̃(L) = s− 1

2
δXhX , (291)

satisfy the Einstein-Hilbert normalization condition (230). The constant superfields

∆ΘA
and ∆a are the potential deviations of the vevs from their supersymmetric

values.

The superpotential (248) is also modified, with now

Wα(T,Φ) = cα
∏

I

[ η(T I)]2(q
I
α+pI

α−1)
∏

A

(ΦA)qA
α (292)

where the parameters qA
α and pI

α satisfy the constraints
∑

A

qa
Aq

A
α = −qa

α, pI
α =

∑

A

qI
Aq

A
α . (293)

The anomaly matching constraints in (261) are unchanged, and (247) and (262) are

replaced by

∑

α

bαc q
a
α =

∑

α,B

bαc n
B
α q

a
B =

∑

B

CB
c

4π2
qa
B = −1

2
δXδ

a
X , (294)

and
∑

α

bαc
(
qI
α + pI

α − 1
)

= b − pI − bc − bIc , (295)

where

pI =
∑

α

bαc p
I
α . (296)

Evaluating the vevs of φA → φ′A in unitary gauge, (263) and (264) become

ūu = e−2b′c/bceκ−2bS/bc

∏

α

∣∣∣∣
bαc
4cα

∣∣∣∣
−2bα

c /bc ∏

I

[
2Re tI |η(tI)|4

](b+pI−bc)/bc
+ O(δ), (297)

and

F I = − 2Re tI

1 + bI ℓ̂

ū

4

(
bc − b− pI

) [
1 + 4Re tI ¯ζ(tI)

]
. (298)
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Finally, the F -component (274) of Φ′ takes the form

FA = − ū
4

∑

B

K̃AB
[
2ŜB̄ − pB − K̂Bbc

]
, (299)

where as usual the indices denote derivatives with respect to chiral and anti-chiral

superfields, K̃AB is the inverse of the metric derived from the “effective” Kähler

potential (246), and the parametersh

pA =
∑

α

bαc q
A
α , (300)

are constrained by the anomaly matching condition (294) which implies

2
∑

A

qa
Ap

A = 2
∑

α,A

bαc q
A
α q

a
A = −2

∑

α

bαc q
a
α = δXδ

a
X . (301)

There are two distinct cases:

• Minimal models: if n = m, the matrix qa
A has an inverse QA

a , since if m U(1)’s

are broken, by definition the q’s form a set of m linearly independent m-

component vectors. The m vector superfields Va “eat” m modular invariant

combinations

−1

2

∑

A

QA
a

(
ΘA + ΘA +GA

)
(302)

of chiral superfields, with ΦA = CAe
ΘA , resulting in a redefinition of the mod-

ular weights of the chiral superfields ΦM :

q′IM = qI −
∑

a,A

qa
MQA

a q
I
A, (303)

and a corresponding shift in the coefficient of the GS term:

bI = b+
1

2
δX
∑

A

QA
a q

I
A. (304)

The constraint (293) on qA
α can be inverted:

qA
α = −

∑

a

QA
a q

A
α , pI

α = −
∑

A,a

qI
AQ

A
a q

a
α . (305)

Using the anomaly matching condition (294) in the definition (296) gives

pI = bI − b (306)

as before, because in unitary gauge Φ′A = CA is again modular invariant.

Contracting the constraints (290) and (301) with QB
a gives

kB = ℓpB =
1

2
δXQ

B
X . (307)

hSee the second footnote in 4.1.
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Then, proceeding as for the toy model, it is straightforward to showi that FA

and ∂v/∂δA are of order ǫ, u as in the toy model.

• Nonminimal models: if n > m, the matrix qa
A is not invertible and in general

pI 6= bI , because the transformation to unitary gauge does not remove the full

modular weight from ΦA; Θ′
A is a linear combination of the n −m D-moduli

with net modular weight q′IA 6= 0. In addition, kA 6= ℓpA in general, and FA

does not vanish when δ = 0. An exception is the case n = Nm with N replicas

of a minimal set of φA, with identical U(1)a charges and modular weights, that

get vevs . They are all made modular invariant by the same transformation so

pI = bI , and

kA = ℓpA =
1

2N
δXQ

A
X . (308)

The effective Lagrangian for the moduli sector is the same as in the minimal

case, but there are m(N − 1) D-moduli.

Before discussing the phenomenology of these models, we note that in typical

orbifold compactifications with Wilson lines there is no asymptotically free gauge

group above the scale of U(1) breaking. One or more asymptotically free gauge

sector will emerge below that scale, provided a sufficient number of gauge-charged

chiral multiplets get masses through their superpotential couplings to the ΦA that

acquire large vevs. In their contribution to the quantum Lagrangian (211) the

effective IR cut-off is their mass, rather than the condensate scale, as in the La-

grangian (399) introduced later in Section 5.5 for supersymmetric QCD. The mass

terms in the superpotential are U(1) and modular invariant, containing factors anal-

ogous to the Wα in (292) that assure that La has the correct anomaly structure at

the string scale. The net result is that the potential is identical to that given above,

with pI , pA determined by the full massless spectrum at the string scale, except

that the β-function coefficient bc is the one that controls the RGE running below

the U(1)a breaking scale, without the contributions from the heavy modes.55

4.3. The vacuum and the moduli sector

The potential is modular invariant, with a similar t-dependence as is found in the

BGW model described in Section 3, so the moduli are still stabilized at self-dual

points t1 = 1, t2 = eiπ/6, with
〈
F I
〉

= 0. The T-moduli masses are determined by

the coefficients of F I in (298). In models that satisfy (307), the squared masses are

positive since b ≥ bc and, using (304), (306) and (307),

pI =
∑

A

pA ≡ p > 0, (309)

because k ∼ |Φ|2 and ℓ are positive. For example in a Z3 orbifold model of Font

et al. that we will refer to as the FIQS model,179 the three Kähler moduli are

iSome terms linear in δ in the F-term where inadvertently dropped in Ref. 55
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approximately degenerate with mRe t(ti) ≈ 5(6)m3/2, mIm t(ti) ≈ 1(2)m3/2 for

i = 1(2).

If we set the moduli at self dual points, the potential for the dilaton becomes,

after integrating out the scalar components ua of Ua as in (283)j

V (ℓ̂) =
|uc|2
16

[
w(ℓ̂) + v(ℓ̂)

]
+ O(ǫ|uc|2, δ3, |uc|4), (310)

where v(ℓ̂) = v(ℓ̂, 0) is given in (282), and the F contribution has

w = w0 − δXh
′
X(ℓ̂)(1 + bcℓ̂)

2, w0 =
∑

A

(pA + bck
A)2

kA
. (311)

For the minimal case characterized by (307), w = 0, V = V (ℓ̂) + O(δ2|uc|2), the

dilaton potential is the same as in the BGW case discussed in Sections 2 and 3,

except for the shift k → k̃ in the dilaton metric in both the potential and in the

kinetic energy term, so that the constraint (160) on the dilaton metric is unchanged.

In the general case, imposing vanishing vacuum energy at leading order in δ ∼ |uc|2
gives

ℓ̂−1
(
1 + bcℓ̂

)2

k̃′(ℓ̂) = 3b2c − w, (312)

and positivityk of the dilaton metric requires w < 3b2c . The viable region of param-

eter space can be explored55 by separating out a minimal subset of the n > m ΦA

with nonvanishing pA:

kA, A = 1, . . . n, → (kP , kM ), P = 1, . . . ,m, M = 1, . . . , n−m, (313)

and writing

kA = ℓpA + yA ,
∑

A

qa
Ay

A = 0 , (314)

where the last equality ensures that if (301) is satisfied, so is (290). The vacuum is

degenerate at the U(1)a breaking scale; at the condensation scale, the (approximate)

vacuum values will be those that minimize v with respect to the yA subject to the

condition in (314). If yA = 0, for all A, the dilaton potential is identical to the

minimal case. Defining QP
a as the inverse of the matrix qa

P , the constraint in (314)

reads

yP = −
∑

M

ζP
MyM , ζP

M =
∑

a

QP
a q

a
M , (315)

jIn nonminimal models with F A, ∂V (ℓ̂)/∂δA ∼ |uc|2 instead of δ|uc|2, it is necessary to keep
order δ3 terms in the ua expansion of the D-terms analogous to (269). Then minimization of the
potential with respect to δ gives δ2 ∼ |uc|2, δ ∼ |uc| ≪ 1, δ3 ∼ |uc|3, so the potential for ℓ̂ is still
dominated by the explicit terms in (310), and δ can be ignored in the analysis of these models
discussed briefly below.
kIf the dilaton metric goes through zero, one should rewrite the theory in terms of the canonically
normalized field, in terms of which the zero of the metric becomes a singularity in the potential.
It is not clear that there might not be some viable region of parameter space in this case.
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and we may take the yM as independent variables. Since

k̃′(ℓ̂) = k′(ℓ̂) +
∑

A

k′A(ℓ̂) = k′(ℓ̂) + δX ℓ̂h
′
X(ℓ̂), (316)

minimizing V ∝ v + w with respect to yM amounts to minimizing w0, giving the

conditions

0 =
∂w0

∂kM
−
∑

P

ζP
M

∂w0

∂kP
= −(pM/kM )2 + b2c +

∑

P

ζP
M

[
(pP /kP )2 − b2c

]
. (317)

If pM = 0, we require kM = yM ≥ 0, and

∂w0

∂yM

∣∣∣∣
y=0

= b2c +
∑

P

ζP
M

(
ℓ̂−2 − b2c

)
. (318)

If ℓ̂b2c < 1 and
∑

P ζ
P
M ≥ 0, the minimum indeed corresponds to y = 0. However if∑

P ζ
P
M < 0, the minimum corresponds to a smaller w0 with y > 0. Larger y results

in smaller h′X , so the net effect is to increase w, and positivity of the dilaton metric

becomes difficult to maintain.55

If pM 6= 0 we have instead of (318) the expression

∂w0

∂yM

∣∣∣∣
y=0

=

(
∑

P

ζP
M − 1

)(
ℓ̂−2 − b2c

)
. (319)

In this case y = 0 is the minimum if and only if
∑

P ζ
P
M = 1. If

∑
P ζ

P
M > 0, the

minimum will in general shift slightly from y = 0. The dilaton potential for these

cases is not substantially different from the minimal case. On the other hand if∑
P ζ

P
M < 0, the situation is similar to the case with pM = 0: the minimum occurs

for larger kA and larger w, such that positivity of the dilaton metric is difficult

to maintain. For example in the FIQS model there are minimal flat directions in

which one, two or three charge-degenerate sets of six chiral supermultiplets ac-

quire vevs and break six U(1)’s. There are additional F -flat and D-flat directions

associated with “invariant blocks” B of fields such that
∑

P∈B
qa
P +

∑

M∈B
qa
M = 0. (320)

It is clear that if we choose ΦM that form invariant blocks with the ΦP , at least

some ζP
M < 0. The numerical solution to the minimization equations for one such

choice55 gave
〈
k̃′
〉
< 0, and this result is likely to be generic.

The vacuum conditions v(ℓ̂) = v′(ℓ̂) = 0 require k̃′ ∼ ℓ̂k̃′′ ∼ ℓ̂b2c in the vacuum,

but there is no a priori reason to expect k̃′′′ to be similarly suppressed if ℓ̂ ∼ 1,

in which case the dilaton mass is enhanced as will be discussed in Section 5.6. If

there is just one hidden sector condensate the universal axion is massless at the

scale of supersymmetry breaking, and is a candidate for the QCD axion, as will be

discussed in Section 5.5. The fermionic superpartners of the moduli have masses

similar to those of the Kähler moduli. Using the FIQS model again as an example,
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it can be shown that for a minimal set of vevs there are two linear combinations

of the three fermions χI that have no mixing with the dilatino, while one linear

combination that is approximately an equal admixture of the χI , mixes with the

dilatino.55 All four masses are roughly the same as mRe t(ti) ≈ 5–6m3/2.

4.4. Observable sector masses: conditions for a viable model

In the minimal models as defined above, the tree level masses of the observable

sector gauginos are identical to those in the BGW case; they are suppressed due

to a factor of the dilaton metric k̃′ ∼ 3b2c . In nonminimal models they will be

suppressed even further since the metric is suppressed further, as discussed in 4.3.

When we consider chiral fields ΦM with no couplings to the condensates we have

to include their F-terms which is the same as those for the ΦA except that pM = 0:

V ∋
∑

M

FMFM =
|uc|2
16

∑

M

[
xM bc −

(
1 + bcℓ̂

)
x′M

]2

xM

[
1 + O(x2)

]

=
|uc|2
16

∑

M

[
xM b2c − 2bc

(
1 + bcℓ̂

)
x′M + 2

(
1 + bcℓ̂

)2∑

a

qa
Mh′ax

′M
]
.(321)

For fields with vanishing vevs, ∂V/∂φ ∝ φ vanishes in the vacuum, the mass matrix

is diagonal:

m2
M =

∂V

∂xM
=

|u|2

16ℓ̂
(1 + bcℓ̂)

2 ∂K̂
′(ℓ̂)

∂xM
+

∂

∂xM
(K̃MN̄F

M F̄ N̄ ) +
∂

∂xM
(K̃AB̄F

AF̄ B̄)

=
|u|2
16

[
b2c − 4bc(1 + bcℓ̂)

∑

a

h′aq
a
M − 2(1 + bcℓ̂)

2
∑

a

h′′aq
a
M

]

+
∂

∂xM
(K̃AB̄F

AF̄ B̄) + O(xM ) . (322)

In minimal models with

h′a = −ℓ̂h′′a =
∑

A

QA
a /2ℓ̂ , pA = kA/ℓ̂ = δXQ

A
X/2 , (323)

the last term in (322) is of order δ|uc|2 ∼ |uc|4, giving

mM = m3/2

[
1 +

ζM

b2c ℓ̂
2

(
1 − b2c ℓ̂

2
)]

+ O(|uc|4), ζM =
∑

a,A

QA
a q

a
M . (324)

The first term in (324) is just the F -term contribution of the BGM model; the

second term is expected to dominate because of the factor b−2
c >> 1, and can give

large (and in some cases negative) masses to squarks and sleptons. As discussed in

Section 3.1, the gravity/dilaton mediated F -term contribution to scalar masses can

be enhanced if they have couplings in the GS term. So, for example, if pi = bgs ≫ b+
in (150) it might be possible to arrange for all masses to be positive (except possibly

the Higgs) at the condensation scale, but this would involve some measure of fine
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tuning. The possibility of including higher order terms in the gauge-charged chiral

superfields |Φ| in the Kähler potential was considered in Ref. 55 and found to

make little difference. The problem can be attenuated somewhat if bc and/or ℓ̂

is larger than expected.l The factor (265) that now appears in the expression for

the condensate vev may allow for the former, and alternate parameterizations55 of

nonperturbative string effects, based on corrections to the action rather that to the

function f(L) in (60) as well as perturbative48 field theoretic quantum corrections

to k(ℓ) can allow for a value of ℓ̂ larger than one while preserving weak coupling

s(ℓ̂) ≤ 1. Another difficulty with large charge-dependent contributions to observable

sector scalar masses is that they can generate flavor-changing neutral currents. This

can be avoided if MSSM states come in sets of three with all the same quantum

numbers (i.e. U(1) charges and modular weights as well Standard Model quantum

numbers), as can happen for example in Z3 orbifold compactifications. The simplest

solution to these problems would be to find a compactification such that ζM = 0 for

observable sector chiral multiplets, which implies strong constraints on the various

U(1) charges.

In nonminimal models that do not involve just charge-degenerate minimal sets,

the expressions for observable sector masses are more complicated, but they are

always of the form m2
M = m2

3/2

(
1 + ζMf(bcℓ̂)/b

2
c ℓ̂

2
)
. The parameter space for

these nonminimal models is constrained to be rather small because of the positivity

constraint on the dilaton metric, the need to avoid an overly large scalar/gaugino

mass ratio and a very large axion coupling constant. Although it has recently been

shown164 that the original cosmological bounds165,166,167 on the axion coupling

can be evaded, increasing the coupling at the string scale leads to a proportional

increase at the QCD scale that might further restrict the class of compactifications

that allow the universal axion to be the QCD axion. We will return to this issue in

Section 5.5. A possible advantage of more general nonminimal models might be that

when more fields get vevs, more unwanted states are removed from the spectrum.

On the other hand, there are other scales where masses could be generated for

additional fields, such as the condensation scale itself, Λc ∼ 1013−14 GeV, and a

scale Λν ∼ 1011−12 GeV suggested by observed neutrino masses. Indeed masses

generated at one or more intermediate scales can be useful in reconciling the data

with string scale unification.168

4.5. Lifting the vacuum degeneracy: D-moduli masses

In minimal models all complex scalars that vanish in the vacuum and have no

couplings to matter condensates acquire masses m = m3/2 (or somewhat larger

masses if they couple to the GS term), while their fermionic superpartners remain

massless, just as for the observable sector of the MSSM. In nonminimal models

lThe point b2c ℓ̂2 = 1 where the charge-dependent contribution to (324) actually vanishes is also
the point where (319) vanishes identically, which is the condition for a minimal solution.



84 Mary K. Gaillard & Brent D. Nelson

where the number n of scalar fields that get large vevs is larger than the number

m of broken U(1)’s, the situation is very different. The Kähler potential in (288)

for the chiral multiplets with nonvanishing vevs is replaced by

K(L,∆, Σ̂) = k̃(L) +
∑

A

kA(L)
(
e

bΣA+∆A+∆A+2
P

a qa
A(Ua+∆a) − 1

)
, (325)

where the modular invariant fields Σ̂A are defined by55

Σ̂A = ΣA −
∑

a,b,B

qa
Ax

Bqb
BN

−1
ab ΣB, ΣA = ΘA + ΘA +GA, (326)

and satisfy
∑

A

qa
Ax

A(L)Σ̂A(L) = 0, xA = kAe∆A+∆A+2
P

a qa
A∆a . (327)

They have vanishing vevs and are the n −m uneaten Goldstone supermultiplets

above the scale of supersymmetry breaking.157,163 But when Σ̂ 6= 0 we have to

include them among the superfields M that appear in the superfield Weyl trans-

formation (256) to the basis where (232) is satisfied. If we restrict ourselves to the

class of “minimal” models with n = Nm where N charge-degenerate sets of scalars

get vevs, the constraints (327), that insure the absence of a linear coupling of Σ̂ to

Ua, imply the additional constraint
∑

A

xA(L)Σ̂A(L) = 0, (328)

with

xA = kA = LpA = Lk′A = LδXQ
A
X/2N, (329)

so we may drop contractions of Σ̂A with any of the vectors in (329), as well as

higher ℓ-derivatives of kA. Then the expressions

L− L̂ =
L2
∑

A k
′A(e

bΣA − 1)

3 − Lk̃′(L)
,

K̂(L̂) = k̃(L) +
∑

A

kA(e
bΣA − 1) + 3 ln(L̂/L),

Ŝ(L̂) = s̃(L) +
3

2L̂L
(L − L̂), (330)

have no terms linear in Σ̂. Expanding as before, we obtain for the effective Kähler

potential

k̃ = K̂ + 2L̂Ŝ = k̃(L̂) + 2L̂s̃(L̂) +
1

2

∑

A

kA(Σ̂A)2 + O(Σ̂3), (331)

and, using the constraint (327)–(329)

K̂(ℓ̂) = k̃(ℓ̂) + O[(ℓ− ℓ̂)2] = k̃(ℓ̂) + O(Σ̂4), (332)
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where we have dropped corrections of order δ ∼ |uc|2. The D-moduli mass comes

from the potential term

K̃ABF
AF

B
=

|u|2

32ℓ̂2

∑

A

kA(Σ̂A)2. (333)

The modular invariant fields Σ̂A with < Σ̂A >= 0 are independent of L in these

models, and may be expressed162 in terms of chiral and anti-chiral fields DA, DA

by expanding the moduli about their vevs
〈
tI
〉
:

Σ̂A = DA +DA + O
([

T̂ I + T̂
I
]2
/
〈
tI + t̄I

〉2
)
,

DA = ΘA +
1

2
〈GA〉 +

〈
∂GA

∂tI

〉
T̂ I − 1

N

∑

B;qa
B

=qa
A

(
ΘB +

1

2
〈GB〉 +

〈
∂GB

∂tI

〉
T̂ I

)
,

T I =
〈
tI
〉

+ T̂ I ,
〈
DA +DA

〉
= 0 . (334)

When we re-express the chiral multiplets DA in terms of an orthonormal set Di

subject to the constraint (328):

DA =

n−m∑

i=1

ciADi ,
∑

A

kAciA = 0 , (335)

the Kähler metric and the squared mass matrix

Kī =
∑

A

CA
i k

ACA
j , µ2

ij =
m2

3/2

b2cℓ
2

∑

A

CA
i k

ACA
j , (336)

with CA
i the inverse of ciA, are diagonalized by the same unitary transformation:

Di → Di = U j
i Dj , di = Di| = Nd(σi + iai) , (337)

where the normalization constant Nd is chosen to make the kinetic energy term

canonically normalized. Then the Lagrangian quadratic in the scalar D-moduli reads

LD =
1

2

∑

i

[
∂µσi∂

µσi + ∂µai∂
µai − 2

m2
3/2

b2c ℓ̂
2

(σi)
2

]
. (338)

The Yukawa couplings for condensation models of the type considered here are

given in Ref. 73; they generate squared masses for the D-moduli fermions (χi L)α =

DαDi| /
√

2 that are equal to half the scalar squared masses up to corrections of

order bcℓ̂ = m3/2/mχ.55 If ℓ̂ ∼ 1 and bc ∼ .03− .04 as suggested by the dark matter

analyses to be discussed in Section 5.4 below, the scalar and fermion masses are

much larger than the gravitino mass:

mχ ≈ mσ/
√

2 ≈ (24 − 30)m3/2 . (339)

However, as discussed in Section 4.4, this hierarchy requires constraints on ob-

servable scalar U(1) charges for a viable phenomenology. On the other hand, the
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D-axions remain massless because the phase of θ = Θ| is undetermined. These

axions might play an interesting role in cosmology with possible contributions to

dark energy or dark matter. Just as in the minimal models, in these restricted non-

minimal ones there are generically many fields with nonvanishing vevs at the U(1)

breaking scale for which the complex scalars acquire masses m = m3/2, and the

fermions remain massless. This would lead to a disastrous cosmology,169,170,171 but

presumably many of these fields acquire supersymmetric masses through superpo-

tential terms coupling them to the ΦA that do get vevs, as well as to other fields

that might acquire vevs at some intermediate scales as mentioned at the end of

Section 4.4.

5. Particle physics phenomenology

5.1. R-parity and modular invariance

One of the challenges of string theory is to provide a mechanism for forbidding

operators that violate lepton and baryon number in the low-energy effective theory.

In the MSSM this is achieved by imposing a discrete symmetry called R-parity

such that the unwanted operators are forbidden, while those that give masses to

quarks and leptons are allowed, as is the Higgs mass term (µ-term) that is needed to

produce the correct electroweak symmetry breaking pattern. We saw in Section 2.3

that the T-duality, or modular invariance, of the weakly-coupled heterotic string

ensures that when SUSY is broken by gaugino condensation in a hidden sector the

Kähler moduli are stabilized at self-dual points where their F -terms vanish. As a

result, in the absence of other sources of supersymmetry breaking, transmission

from the hidden sector to the observable sector is dilaton-mediated. Provided that

the matter couplings pi to the Green-Schwarz term (116) vanish (or are degenerate),

the resulting scalar masses will be flavor-diagonal at tree level. The loop corrections

are then merely RG-induced, the off-diagonal scalar masses are small and scalar-

mediated flavor changing neutral current (FCNC) effects are therefore sufficiently

small. We saw however in Section 4 that charge-dependent scalar masses may be

generated when there is U(1) anomaly cancelation by a second Green-Schwarz term.

Such a term amounts to an FI term that triggers the breaking of some number m of

U(1)’s by n nonvanishing scalar vevs 〈Φα
A〉; in this case the theory remains FCNC-

free if observable sector fields that are degenerate under Standard Model charges are

also degenerate under the broken U(1) charges. A second consequence of modular

invariance is that there is generally a residual discrete symmetry that might play

the role of R-parity in the MSSM.172

The modular transformations given in (76) and (84) are those of the minimal

subgroup of a generally larger group of modular transformations. For example in

Z3 orbifolds with just three diagonal Kähler moduli, the largest possible symmetry
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group is [SL(2,Z)]3 witha

T I → aIT I − ibI

icIT I + dI
, ΦA → eiδA−

P

I qI
AF I

ΦA, F I = ln
(
icIT I + dI

)
,

aIdI − bIcI = 1, aI , bI , cI , dI ∈ Z ∀ I = 1, 2, 3, (340)

under which the Kähler potential and superpotential transform as

K → K + F + F , W → e−FW, F =
∑

I

F I . (341)

The T I are trivially invariant under (340) with

aI = dI = ±1, bI = cI = 0, eF I

= einπ . (342)

The self-dual vacua Ts d are further invariant under (340) with

bI = −cI = ±1 , (343)

and for
〈
tI
〉

= 1

aI = dI = 0, eF I

= ei n
2 π, (344)

or for
〈
tI
〉

= eiπ/6

{
aI = bI , dI = 0,

dI = cI , aI = 0
, eF I

= ei n
3 π. (345)

Thus for three moduli at self-dual points the residual symmetry group is GR =

Zm
4 ⊗ Zm′

6 , m+m′ = 3.

The gaugino condensate vevs 〈u〉 6= 0 break this further to a subgroup with

ei ImF = eF = e2niπ, (346)

under which λL → e−
i
2 ImFλL = ±λL. It is natural to identify the case with a minus

sign with R-parity. This subgroup also leaves invariant the soft supersymmetry-

breaking terms in the observable sector, if no other field gets a vev that breaks it.

Consider, for example a scenario in which the µ-term comes from a superpotential

term XHuHd, with the vev 〈x〉 = 〈X |〉 6= 0 generated at the TeV scale. Then the

symmetry could be broken further to a subgroupR ∈ GR such thatRX = X , unless

there is a concomitant breaking of a U(1) gauge factor such that X is invariant

under redefined GR transformations that include global transformations under the

broken U(1). On the other hand if the µ-term comes from a Kähler potential term

generated by invariant vevs above the scale where the moduli are fixed, there would

be no further breaking until the Higgs get vevs. Since an invariant µ-term implies

thatHu andHd have oppositeGR charges as well as opposite weak hypercharge, the

GR transformations can be redefined to include global hypercharge transformations

aHere we are again neglecting mixing95,97 among twisted sector fields of the same modular weights
qI
A with mixing parameters that depend on the integers aI , bI , cI , dI .
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such that they are both invariant, and no further breaking of the discrete symmetry

occurs at the electroweak scale.

The transformation property (89) of the Dedekind η-function is not fully general.

More precisely it reads

η(T I) → eiδI e
1
2F (T I )η(T I), F (T I) = F I , δI = δI(a

I , bI , cI , dI) . (347)

The constant phases7 δI are commonly dropped in the literature because they do

not appear in the scalar potential, and it follows from T-duality that they can

be re-absorbed8 into the transformation properties of the twisted sector fields by

removing the phases δA in (340). This was implicitly done in writing (84), following

the commonly used convention. When these phases are taken into account the

constraints obtained by imposing T-duality covariance on superpotential terms of

the form

W =
∏

A

ΦA
∏

I

η(T I)2(
P

A qI
A−1), (348)

coincide with selection rules174 that follow from the discrete symmetries of orbifold

compactification.

Consider for example a Z3 orbifold with untwisted sector fields U I
A, and twisted

sector fields TA and Y I
A with modular weights

(
q J
IA

)
U

= δJ
I ,

(
qI
A

)
T

=

(
2

3
,
2

3
,
2

3

)
,

(
q J
IA

)
Y

=

(
2

3
,
2

3
,
2

3

)
+ δJ

I . (349)

Allowed superpotential terms trilinear in matter fields are of the form8 U1U2U3

and (T )3. When the appropriate Dedekind η factors in (348) are included, all such

terms are covariant provided δU = 0, δT = − 2
3δ = − 2

3

∑
I δI . If we further impose

δY I = − 2
3δ − 4δI , the superpotential terms (348) constructed from the monomials

U1U2U3, T 3, UIY
IT 2, UIY

IUJY
JT, UIY

IUJY
JUKY

K , (350)

are covariant under (340) and (347). Higher dimensional monomials can be con-

structed by adding factors of invariant monomials. For example

η6Π, Π = Y 1Y 2Y 3, η =
∏

I

ηI , (351)

is invariant. The group (340) of duality transformations on T I is generated173 by

T I → 1/T I with δ(0, 1,−1, 0) = π/4 mod 2π, and T I → T I − i with δ(1, 1, 0, 1) =

π/12 mod 2π. Therefore δ = nπ/12 is a rational number, and invariant operators

can be constructed from products of covariant operators (348) multiplied by η:

η2m
m∏

i=1

Wi, 2mδ = m′π

6
= 2πn . (352)

These potential terms are consistent with the selection rules;174 they are further

restricted by additional selection rules and gauge invariance. The invariant opera-

tors (351) and (352) can also be used to construct terms in the Kähler potential.
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For the subgroup defined by (342) - (346), iδ = − 1
2F = −inπ, the superpoten-

tial is invariant, as are the monomials in (350). Therefore any product of them

could appear in the superpotential or Kähler potential in the effective theory below

the scale where the T-moduli are fixed and supersymmetry is broken (e.g. through

quantum corrections and/or integrating out massive fields) with perhaps additional

vevs that are invariant under some GR generated at that scale.

Superpotential terms of dimension three can be generated from higher order

terms when some fields acquire vevs. In models with an anomalous U(1)X , with

m U(1)’s broken by n = Nm vevs as discussed above, the modular weights are

modified in the same way as in (303) for the minimal case n = m. Then for a term

in the superpotential (348) with some
〈
ΦA
〉
6= 0:

W =
∏

M

ΦM
∏

A

〈
ΦA
〉∏

I

[η(T I)]2(
P

M qI
M+

P

B qI
A−1)

=
∏

M

Φ′M
∏

A

〈
ΦA
〉∏

I

[η(T I)]2(
P

M q′I
M−1), (353)

because W is also U(1)a invariant:
∑

M qa
M +

∑
A q

a
A = 0.b In order to make T-

duality fully manifest below the U(1)-breaking scale, we have to redefine the trans-

formation (340) on ΦA by including a global U(1)a transformation such that ΦA

is fully invariant, and

Φ′M → eiδ′
M−P

I q′I
M F I

ΦM , δ′M = δM −
∑

A, a

qa
MQA

a δA . (354)

A priori we expect that
〈
ΦA
〉
∼ 0.1, so that couplings arising from high dimen-

sion operators in the superpotential are suppressed.c We would like to have one

large coupling (Q3, T
c, Hu) which should correspond to one of the dimension-three

operators in (350). Until recently, most models studied were Z3 orbifold compact-

ifications with all quark doublets in the untwisted sector.87,175,176,177,88,178,113 In

this case we should take T c and Hu in the untwisted sector as well, and require

qa
Q3

+ qa
T c + qa

Hu
= 0. That is, if we identify the QI generation index with the mod-

ulus index, we can have, e.g., T c = T c
2 , Hu = Hu

1 . Then to suppress the Q2C
cHu

and Q2U
cHu couplings we require Cc, U c /∈ U3, so one of these must be in the

twisted sector T . These requirements can be met in the FIQS model179 mentioned

in Section 4. This model was analyzed in Ref. 172 where it was found not to produce

the desired R-parity. The subgroup GR that leaves the self-dual points invariant has

iδI = − 1
2F

I , and after the redefinitions (353) and (354) the MSSM chiral multiplets

transform with phases eniπ/33. However these phases combine in the superpotential

terms in such a way that baryon number violating couplings cannot be forbidden.

Moreover the symmetry must be broken to a smaller group to allow mass terms

bRecall from Section 4 that qa
M is the charge of field ΦM with respect to the Abelian factor U(1)a,

and similarly for qa
A.

cThe factors multiplying these terms can in fact be rather large.180,101
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for all quarks and leptons and to generate a µ-term; once this is done all gauge

invariant trilinear terms are allowed.

We can turn the question around and ask what are the constraints on the U(1)

charges that allow for R-parity in a given compactification. Taking Z3 models as an

example, assume that, as in the FIQS model, QI , T
c, and Hu are in the untwisted

sector, all other MSSM superfields are in the twisted sector T , and in each sector

fields degenerate in MSSM charges are also degenerate in U(1) charges. The last

condition, which assures the suppression of FCNC, implies that fields in the twisted

sector T that are degenerate in MSSM charges are further degenerate in R-parity.

Then for all the observed Yukawas to be generated the QI must all have the same

R-parity, which is compatible with their having the same U(1) charges only if the

R-parity group is further constrained to have172

F I = 2nI iπ ∀ I. (355)

Assuming further that there are no standard model singlets in the untwisted sector,

the R-parity transformations take the form

Φm → e2iπβm

Φm,

βUm
J =

∑

I

nI


1

3

∑

a,A∈T,Y

qa
mQ

A
a −

∑

a,A∈YI

qa
mQ

Y A
I

a




βT m

=
∑

I

nI


1

3


 ∑

a,A∈T,Y

qa
mQ

A
a − 1


−

∑

a,A∈YI

qa
mQ

Y A
I

a


 . (356)

In addition, requiring that mass terms be allowed for all quarks implies that the

untwisted field T c ∈ U has the same R-parity as U c, Dc ∈ T , which entails a relation

between their (different) U(1) charges. We are left with the following set of phases:

βHu

= −βHd

= γ, βQ = β + 2γ, βUc

= −β − 3γ,

βDc

= −β − γ, βL = α− γ, βEc

= −α+ 2γ. (357)

With these phases all MSSM superpotential terms are allowed, while QDcL and

LLEc are forbidden provided α 6= n, and U cDcDc is forbidden provided 3α +

5β 6= n. Below the scale of electroweak symmetry breaking we redefine R-parity as

discussed above:

βm → β′m = βm − 2Ymγ, (358)

so that β′Hu

= β′Hd

= 0. In contrast with the conventional definition of R-parity,

higher dimension operators that generate B and L violation can also be suppressed.

For example, the dimension-four superpotential operator Ũ cŨ cD̃cEc, allowed by

conventional R-parity, leads to dimension-five operators in the effective Lagrangian

that may be problematic181 even if these couplings are Planck- or string-scale sup-

pressed, given the current bounds on the proton decay rate. This problem is easily
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evaded in the current context; for the choice of phases considered above this re-

quires 3β + α + 3γ 6= n. The stability of the lightest neutralino is assured at the

same level as proton stability since its decay products would have to include an odd

number of Standard Model fermions and hence violate B and/or L.

There are many other possibilities even within the context of Z3 orbifolds, such

as cases with all MSSM particles in the twisted sector.182 The FIQS model, which is

the best studied of the Z3 models, cannot reproduce the observed Standard Model

Yukawa textures,101 quite apart from the issue of providing an R-parity. More

generally it is difficult to get the standard SU(5) normalization of weak hypercharge

in these models,113 and different compactifications, such as recently proposed Z6-

based orbifolds,80,81,82,183 with the first two generations of quark doublets in the

twisted sector, would be interesting to analyze in this context.

Finally we remark that it is not actually necessary for the moduli to be stabilized

at their self-dual points for R-parity to be a symmetry of the superpotential. This is

because the superpotential is a sum of monomials that are products of matter fields

with coefficients that are functions of the moduli only. These functions are invariant

at the self-dual points, which means that products of matter fields are invariant by

themselves provided F I(T I) is replaced by F I(T I
s d) in the transformation property

of ΦA in (340). In other words, there is a (Z4 ⊗ Z6)
3 subgroup of the group of

modular transformations that coincides with a subset of the orbifold selection rules,

which have also been considered a potential source of R-parity. The use of residual

discrete symmetries from T-duality allow these selection rules to be rephrased in

terms of the explicit symmetries of the effective supergravity theory, and combining

them with U(1) symmetries to obtain an unbroken discrete symmetry at each stage

of gauge symmetry-breaking generates noninteger charges that make it possible to

exclude higher dimension operators as well as the dimension-four operators excluded

by conventional R-parity.

5.2. General flavor changing processes

The issue of R-parity is clearly critical to a viable low energy phenomenology. By

eliminating terms odd under R-parity, the contribution of superpartners to FCNC

processes will generally be small if the size of the scalar masses is fairly large. But

the previous statement assumes that soft scalar masses themselves are diagonal in

the flavor basis. That is, that all flavor-changing processes involving squarks and

sleptons are proportional to Yukawa couplings. To a good approximation this is

true in the BGW model: scalar masses are generally large and universal at tree

level, with loop corrections violating this universality only at the few percent level.

In fact, the constraints on the off-diagonal elements of the scalar mass matrices

weaken very quickly as the overall scale of the masses exceeds 1 TeV, though the

imaginary parts of these same masses can remain tightly constrained.184

Naively, therefore, we might conclude that the BGW class of theories is among

those that are largely immune to the supersymmetric FCNC problem. But it is often
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said that the staring point for a discussion of flavor in the context of supergravity

should be one of arbitrary off-diagonal scalar masses – not the diagonal tree-level

masses we derived in Section 3. The argument runs something like this. One can

imagine a priori operators of the form
∫

d4θ
XX

m2
pl

Q
ī
Qj, (359)

where X is a Standard Model singlet that is presumably a hidden sector field.

If it participates in supersymmetry (SUSY) breaking, then it will generate off-

diagonal soft-masses. In the absence of a rule for how this X couples to Standard

Model matter (such as via gauge charges in gauge mediation) we must assume that

different flavors can be treated differently. In other words, there is no symmetry

argument as to why operators of the form of (359) which mix flavors should be

absent.

But by “symmetry” what is typically being considered is a gauge symmetry. Yet

the operator in (359) may admit a geometrical interpretation. Let us rewrite things

to make this more apparent
∫

d4θ
Rījk̄ℓ

M2
pl

X
k̄
XℓQ

ī
Qj , (360)

where the tensorRījk̄ℓ is the curvature tensor formed from the field-reparameterization

connection

Ri
jkm̄ = Dm̄Γi

jk; Γi
jk = Kin̄∂jKkn̄ = Kin̄∂j∂k∂n̄K , (361)

where Dm̄ = Kℓm̄D
ℓ is a covariant derivative with respect to field reparameteriza-

tion and Kℓm̄ is the Kähler metric. Thus, while an understanding of the form of

this tensor in (360) may not be possible in terms of the gauge quantum numbers

of the fields involved, an understanding in terms of the isometries of the manifold

defined by the chiral superfields of the theory may indeed exist. This point has been

emphasized recently for string-based effective supergravity theories 185,186.

To address the question of what constraints are needed to avoid experimen-

tally excluded FCNC effects, we first note that the tree potential of an effective

supergravity theory includes a term

Vtree ∋ eKKiK̄K
ī|W |2 . (362)

So prior to any discussion of large loop-induced contributions to flavor-changing

operators it is necessary to ensure their absence at the tree level. The observed

suppression of FCNC effects thus constrains the Kähler potential already at the

leading order – to a high degree of accuracy we require that187

KiK̄K
ī 6∋

〈
f(X, X̄)

〉
φa

f φ̄
ā
f ′ 6=f , (363)

where f, f ′ are flavor indices, a is a gauge index, φa
f any standard model squark or

slepton, and X is a singlet of the Standard Model gauge group. For example, in the
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no-scale models that characterize the untwisted sector of orbifold compactifications,

we have

KiK̄K
ī = 3 +KSKS̄K

SS̄, (364)

which is safe, since KS is a function only of the dilaton. The twisted sector Kähler

potential (83) is flavor diagonal and also safe. But the higher order corrections

to (83) could be problematic if some φa = Xa have large vevs (i.e. within a few

orders of magnitude of the Planck scale). Thus phenomenology requires that we

forbid couplings of the form φa
fφ

ā
f ′ 6=f |φa′

f”|2Xb1 · · ·Xbn , n ≤ N , where N is chosen

sufficiently large to make the contribution
〈
Xb1 · · ·Xbn

〉
to the scalar mass matrix

negligible.

In addition to these higher-order terms, the quadratically divergent one-loop

corrections generate a term

V1−loop ∋ eKKiK̄R
ī|W |2, Rī = Kik̄Rk̄lK

k̄. (365)

where Rī is the Kähler Ricci tensor. Since the Ricci tensor involves a sum of Kähler

Riemann tensor elements over all chiral degrees of freedom, a large coefficient may

be generated, proportional to the number of chiral superfields Nχ. For example,

for an untwisted sector U with three untwisted moduli T i and Kähler potential as

in (81) we get

Rn
ī = (Nn + 2)Kn

ī . (366)

While this contribution is clearly safe, since the Ricci tensor is proportional to the

Kähler metric, the condition that the tree potential be FCNC safe does not by itself

ensure that (365) is safe in general. For this we require in addition the absence of

Kähler potential terms of the form φa
f φ̄

ā
f ′ 6=f |φa′

f ′′ |4(Xb)n≤N . On the other hand, if

the Kähler metric is FCNC safe due to an isometry, the same isometry will protect

the Ricci tensor from generating FCNC.

There is a large class of models in which FCNC are suppressed independently

of the details of the structure of the Kähler potential, provided the moduli tI are

stabilized at self dual points. The supersymmetric completion of the potential in any

given order in perturbation theory yields (in the absence of D-term contributions)

the scalar squared mass matrix

(m2)i
j = δi

jm
2
3/2 −

〈
R̃i

jkm̄

〉
F̃ kF̃

m̄

, (367)

where R̃i
jkm̄ is an element of the Riemann tensor derived from the fully renormalized

Kähler metric, and F̃ i is the auxiliary field for the chiral superfield Φi, evaluated

by its equation of motion using the quantum corrected Lagrangian. Since the latter

is perturbatively modular invariant, the Kähler moduli ti are still stabilized at self-

dual points with
〈
F̃ ti
〉

= 0. Classically we have Ra
bss̄ = 0 where the indices a, b

refer to gauge-charged fields in the observable sector. This need not be true at
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the quantum level. For example, if the quantum correction to the Kähler potential

includes a term188,189,190,191

∆K =
1

32π2
STrΛ2

eff ∋ cNχ

32π2
eαK , (368)

with α and c coefficients which depend on the nature of the Pauli-Villars regulating

sector, we get
〈
R̃a

bss̄

〉
= δa

b

cNχ

32π2
α2eαK (Kss̄ + αKsKs̄) , (369)

which is flavor diagonal, and therefore FCNC safe.

A more substantive comparison can be made by considering a particular Kähler

potential. Take the case of

K = g(M,M) +
∑

a

fa(M,M)|Φa|2 +
1

4

∑

ab

Xabfafb|Φa|2|Φb|2 + O(|Φ|3), (370)

g(M,M) = −
∑

i

ln(T i + T
i
), fa(M,M) =

∏

i

(T i + T
i
)−qi

a . (371)

The term proportional to Xab may give rise to potentially dangerous off-diagonal

elements through the second term in (367). The form of these terms will depend

on how the quadratically divergent parts of R̃i
jkm̄ are regularized. Returning to

the discussion of loop corrections in supergravity from Section 3.3 we recall that

there were two sets of Pauli-Villars (PV) fields necessary to regulate loops involving

light matter fields. These fields were labeled Φ and Π and were coupled through a

supersymmetric mass term as in (181). We can relate the field-dependent effective

cut-off for the quadratic divergences to this PV mass via the relation

ΦI ,ΠI : e(1−αα)KKiı̄|βαµ|2 ≡ (βα)
2
Λ2

α , (372)

where i labels the light (observable sector) chiral superfield Zi and α labels the PV

regulating fields associated with Zi. Note that Λpv ≃ mpl = 1 and β is assumed

to be an O(1) parameter. If the supersymmetric Pauli-Villars regulator masses are

independent of the dilaton, then in the BGW model the potential off-diagonal scalar

masses take the form

(m2)i
j = 3m2

3/2β
2
αΛ2

αδ
i
j

(
∑

k

Xjk +
∑

I

qI
j

)
(1 − αα) (2 − αα) . (373)

Therefore, even in this particularly simple case of dilaton domination there is a

potential for sizable FCNCs since the summation in the first term of (373) runs

over all fields which participate in the quartic coupling of (370).192 However, the

presence of this off-diagonal scalar mass contribution depends on the parameters

αα, which are determined by Planck-scale physics. In particular, the contribution

vanishes completely – independent of the values of the modular weights or the

values of Xab – provided α = 1 or 2.

The issue of whether supergravity effects induce large FCNCs therefore depends

on the physics of the UV completion of the theory. In this case that UV completion
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is heterotic string theory itself. The manner in which the Planck-scale theory soft-

ens ultraviolet divergences is reflected in the Kähler potential factors αA. As argued

in Section 5.1, there are good reason to believe that the higher-dimension operators

involving Xab in (370) are not arbitrary, but are in fact tightly constrained. Ulti-

mately the issue of FCNCs thus becomes an issue of how flavor physics is encoded

in string models in the first place.10

5.3. Collider signatures

The relatively low masses for the gauginos in this class of models should make

them easily accessible at hadron colliders. With the reduction in the gluino mass it

is possible to greatly increase the accessibility of the gluino at Tevatron energies.

This suggests that these models can be probed significantly in the short term even

before the LHC data taking begins. It was for this reason that the Kähler-stabilized

models of the weakly-coupled heterotic string were included in a set of benchmark

models for the Tevatron constructed in Ref. 193.

As described in Section 3.4, a convenient parameter space for the BGW class

of models is
{
tanβ,m3/2, b+

}
and sgn(µ). The three benchmark points chosen in

Ref. 193 were defined by the set
{
tanβ,m3/2, anp

}
, but we can replace anp with b+

through (175). The boundary condition scale was taken to be Λuv = 2 × 1016 GeV

as this is a common convention in the literature and makes for easier comparisons

with previous results. The specific values were

Case A :
{
tanβ, m3/2, b+

}
= {10, 1500 GeV, 0.152} (374)

Case B :
{
tanβ, m3/2, b+

}
= {5, 3200 GeV, 0.063} (375)

Case C :
{
tanβ, m3/2, b+

}
= {5, 4300 GeV, 0.038} . (376)

The last two cases correspond to beta-function coefficients b+ = 5/8π2 = 0.063 and

b+ = 3/8π2 ≃ 0.038. The former could result from a condensation of pure SU(5)

Yang-Mills fields in the hidden sector. The latter case could be obtained either from

a similar condensation of pure SU(3) Yang-Mills fields or from the condensation

of an E6 hidden sector gauge group with 9 27’s condensing in the hidden sector.d

The first case is just on the edge of where realistic gravitino masses can be obtained

from some pair of values for
{
(cα)eff ,

(
bα+
)
eff

}
. It corresponds to a condensing group

beta-function coefficient of b+ = 12/8π2 ≃ 0.152, which could result from a hidden

sector condensation of pure E6 Yang-Mills fields.

From these values and the expressions in (195) it is possible to construct the

entire superpartner spectrum, assuming the MSSM field content and proper elec-

troweak symmetry breaking. The results are give in Table 1. For comparison we

also give the physical spectrum for a unified model of the minimal supergravity

type, for which the unified scalar mass is taken to be m0 = 100 GeV, the unified

gaugino mass is taken to be m1/2 = 250 GeV, and the unified trilinear coupling A0

dThis is precisely the case marked with the circle in Figure 8.
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Table 1. Sample Spectra for benchmark points. All

masses are in GeV.

Point A B C mSUGRA

tan β 10 5 5 10

mχ0
1

78 93 91 98

mχ0
2

122 132 110 182

m
χ±
1

120 132 110 181

mg̃ 471 427 329 582
eB %|LSP 89.8 % 98.7 % 93.4 % 99.9 %
fW3%|LSP 2.5 % 0.6 % 4.6 % 0.0 %

mh 114.3 114.5 116.4 112.0
mA 1507 3318 4400 381
mH 1510 3329 4417 382
µ 245 631 481 332

mt̃1
947 1909 2570 392

mt̃2
1281 2639 3530 571

mc̃1 , mũ1
1553 3254 4364 528

mc̃2 , mũ2
1557 3260 4371 547

mb̃1
1282 2681 3614 501

mb̃2
1540 3245 4353 528

ms̃1
, md̃1

1552 3252 4362 527

ms̃2
, md̃2

1560 3261 4372 553

mτ̃1
1491 3199 4298 137

mτ̃2
1502 3207 4308 208

mµ̃1
, mẽ1

1505 3207 4309 145
mµ̃2

, mẽ2
1509 3211 4313 204

is taken to vanish. This is model point B of Battaglia et al.194, which is very nearly

the Snowmass point 1A.195 A few initial comments are in order. First we note that

the µ-parameter for the three BGW points is quite small relative to typical scalar

masses. This is the focus-point effect at work, alluded to earlier. Note also the de-

parture of these models from the typical mSUGRA relation mχ0
1
≃ 0.5mχ±

1
, with

the significant W -ino component of the LSP (indicated by the size of W̃3%|LSP ver-

sus B̃ %|LSP). Finally, the three BGW points have scalars which are much larger

than those mSUGRA models (such as Snowmass point 1A) which are typically used

for collider studies. This impacts on both the production of superpartners as well as

the branching fractions of these superpartners to “typical” SUSY-indicating final

states.

Figure 14 shows naive estimates of numbers of events of various signatures in

2 fb−1 integrated luminosity at Tevatron center-of-mass energies for the models of

Table 1. The signature of these models was calculated using PYTHIA,196 but only

at the generator level. No geometric or kinematic cuts, no triggering efficiencies

are applied, no jet clustering is performed, tau leptons are not decayed, etc. The
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3jets(inc) 1l+jets OS+jets SS Trilepton 3τ
1

10

100

1000

Number of events (L=2fb-1 )

mSUGRA
Case A
Case B
Case C

Fig. 14. Number of superpartner events of different signatures for models of Table 1
at the Tevatron. These numbers are based on counting topologies from PYTHIA at the parton level
with no kinematic or geometric cuts. Note the logarithmic scale in numbers of events. Descriptions
of each signature type are given in the text.

event numbers are only meant to illustrate the generic features of each model and

demonstrate the experimental challenges. All events have missing transverse energy

as we assume an intact R-parity. The signature set is as follows

(1) Inclusive multi-jets njets ≥ 3,

(2) One lepton plus njets ≥ 2,

(3) Opposite sign (OS) dileptons plus njets ≥ 2,

(4) Same-sign (SS) dileptons plus any number of jets,

(5) Trileptons plus any number of jets,

(6) Three taus plus any number of jets [before decaying the taus].

The very large number of jet events with missing energy, relative to the Snowmass

benchmark, is the result of the much lighter gluino for this model. The signatures

are most pronounced for point C with the lightest gluino mass. In general, the SUSY

signature space is dominated by gluino production and decay for the BGW class of

models.197

This is only the beginning of a meaningful analysis. A study of the backgrounds

must of course be done to be sure any given channel is detectable, but models

with hundreds of events are presumably detectable for the first two signatures, and
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models with tens of events for the rest. The same-sign dilepton channel has smaller

backgrounds: even a handful of clean events may constitute a signal. Furthermore,

despite the fact that the event numbers in Figure 14 are based on unsophisticated

estimates, taking ratios of such inclusive signatures should be robust under more

detailed analyses. For example, the ratio of OS dilepton + jets events to trilepton

events should be roughly 5 : 2 in the BGW model, independent of the other pa-

rameters, as a result of the predominance of gluino pair production over squark

production.193

The potential utility of using combinations of inclusive observables to separate

classes of models was explored in Ref. 9, where point C of (376) was studied in

much greater detail for the LHC environment. Consider the situation after 10 fb−1

of integrated luminosity (i.e. one year at 1033cm−2sec−1) at the LHC. Looking at

just the most inclusive signatures – those of Figure 14 – plus crude kinematic infor-

mation, can separate the Kähler-stabilized models from alternative SUSY-breaking

paradigms. For example, in Table 2 we collect the predictions for numbers of events

with missing transverse energy in excess of 100 GeV, at least two jets (each with

transverse energy above 100 GeV) and various final state topologies for Standard

Model processes as well as various paradigms of new supersymmetric physics. We

also include the peak in the effective mass distribution, where meff is defined as

meff = ET
miss +

∑

jets

ET
jet . (377)

In the table, model A is the Snowmass point SPS 1A (only slightly modified from the

unified model in Figure 14) with parameter set m0 = 200 GeV, m1/2 = 250 GeV,

A0 = −800 GeV, tanβ = 10 and positive µ. Model B is also a unified model, but

in this case with very heavy scalars to achieve a “focus point” model similar in

nature to the BGW class. The parameter set for this model is m0 = 2150 GeV,

m1/2 = 300 GeV, A0 = 0 GeV, tanβ = 10 and positive µ. Model D is a strongly-

coupled heterotic string model withoutD5-branes,198,199,200,201,202 which we include

here for comparison to our Kähler stabilized model. More examples were considered

in the original paper of Reference 9.

Table 2. Number of events in excess of the Standard Model
prediction for different signatures. For each channel the Stan-
dard Model baseline is given in the first column. Subsequent
columns give the excess beyond this baseline for selected mod-
els described in the text.

Channel SM A B BGW Point C D

Jets (×103) 100.0 59.5 0.7 31.7 6.6
1ℓ (×103) 13.0 17.1 0.5 7.3 1.7
OS (×103) 7.0 5.7 0.2 2.0 0.6
SS 20 1332 99 504 160
3ℓ 60 737 97 204 77

mpeak
eff

(GeV) - 812 1140 838 1210
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We note that each model can be “discovered” above the Standard Model back-

ground estimation in at least one channel (assuming a very naive estimate of
√
Nsm

for a measure of the approximate experimental error in the observations). What is

more, the models can be distinguished from one another – this is particularly impor-

tant for using models of string physics as interpreters of possible LHC signals. The

ability of inclusive signatures to distinguish the Kähler-stabilized heterotic string

model from other SUSY models was tested using global fits to simulated data.9.

For example, the minimal supergravity point given by

tanβ = 10 m1/2 = 380 m0 = 600 A0 = 0 sgn(µ) > 0. (378)

was used to simulate 50,000 events for LHC center-of-mass energies using PYTHIA.

The inclusive observables of Table 2 were then computed. Also computed was the

SUSY contribution to the anomalous magnetic moment of the muon asusy

µ and to the

rate for b→ sγ processes. In an effort to fit the resulting “data,” the same simulation

was performed on an ensemble of minimal supergravity models with A0 = 0 but

varying the parameters tanβ, m0 and m1/2. For each resulting set of collider +

indirect observables, a χ2-fit was performed to determine how well the test point

reproduced the target data. Not surprisingly, the best-fit χ2 corresponded to a point

very close to (378) in the ensemble, namely the case tanβ = 10, m1/2 = 380 GeV

andm0 = 500 GeV with a minimum chi-squared of (χ2)min = 1.7 with three degrees

of freedom. But would another model fit this data equally well?

When an ensemble of experiments from the BGW model was constructed, by

simulating 50,000 events at each point in a mesh over the three-dimensional pa-

rameter space defined by
{
tanβ,m3/2, b+

}
, the resulting best fit point had the

parameters
{
tanβ,m3/2, b+

}
=
{
5 , 2750 GeV , b+ = 8/8π2

}
which corresponds to(

χ2
T

)
m

= 2.8 with five degrees of freedom. It would appear that the nonuniversal

model is doing a fairly adequate job of reproducing the inclusive signatures! But

when additional kinematic data is taken into account the two can clearly be dis-

tinguished. For example, when we include the peak in the meff distribution and

the peak in the invariant mass distribution mℓℓ of opposite-sign dilepton events

we obtain
{
mpeak

eff ,mpeak
ℓℓ

}
= {1360 GeV, 92 GeV} for the true “data,” which was

well reproduced by the best-fit minimal supergravity point. In contrast, the best-fit

Kähler-stabilization model point produced
{
mpeak

eff ,mpeak
ℓℓ

}
= {987 GeV, 58 GeV}.

Even allowing for relatively large uncertainties in the measurement of these quan-

tities these are without question measurable differences.

Is it reasonable to ask how well do the above results hold when trying to dis-

tinguish two models across their entire parameter space (as opposed to trying to

fit a single point)? Doing so requires expanding the list of observables to consider

to include additional kinematic information and asymmetries in the LHC event

rates. Kane et al.203 have considered the parameter space of several prominent

string constructions that have been studied in the literature, including the Kähler

stabilization model reviewed here. They conclude that models of the BGW class
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can be distinguished from the other string-based effective theories over most of its

parameter space. The key observables are

(1) The number of “clean” multi-lepton events

(2) The total rate of dilepton events with at least two jets

(3) The fraction of dilepton + jet events for which at least one of the jets is tagged

as a b-jet

(4) The charge asymmetry in events in which there is a single high-pT lepton

(5) The number of events with a single (hadronically-decaying) tau

(6) The peak in the missing ET distribution over all events with at least 100 GeV

of missing ET

Let us consider just a couple of examples of how these observables help to

distinguish this class of models from others. Events with high-pT leptons but with no

jets over 100 GeV in transverse energy are called clean events. They arise from direct

production of neutralino/chargino pairs, which certainly has a sizable cross-section

in the BGW class. However, the mass difference between the lightest chargino and

lightest neutralino is typically small. The resulting leptonic decay products therefore

tend to be soft and thus the number of clean leptonic events will be very sensitive

to the pT threshold demanded of the leptons. To be included in the data sample

in the study of Kane et al. a minimum pT of 10 GeV was demanded for electrons

and muons. Therefore there are essentially no clean dilepton/trilepton events in the

BGW model when LHC-motivated cuts are used.

Associated production of squarks with gluinos can give rise to a charge asym-

metry in events with a single high-pT lepton. At the LHC, the produced squark is

most likely to be an up-type squark as the initial state is asymmetric between up

and down quarks. These squarks will decay preferentially to a positive chargino,

which then decays to a positively charged lepton and missing energy. When squarks

are relatively light one therefore expects to see more events with jets and a single

high-pT lepton as well as an asymmetry in favor of positive charges for these lep-

tons. The heavy squarks of the BGW model reduce this production rate and give

rise to fewer events and almost no asymmetry. By combining observations such as

these it should be possible to separate models from one another, as well as eliminate

classes of models when confronting them with actual signals at the LHC.

5.4. Dark matter

Another important experimental arena in which nonuniversal gaugino masses can

play a significant role is in the thermal production of cold dark matter in the form

of stable LSP neutralinos.204,205 One of the prime virtues of supersymmetry as an

explanation of the hierarchy problem is that it tends to also provide a solution to the

dark matter problem as a nearly automatic consequence of R-parity conservation.

But models in which gaugino masses are universal at some high scale tend to predict

too large a relic neutralino density for generic parameter choices.206,207 The reason



Kähler Stabilized, Modular Invariant Heterotic String Models 101

m0 (GeV)
6000

5000

4000

3000

2000

0

1000

M2 M1)( high

M
2

M
1
)

(
lo

w
= 

2
~

: 
cM

SS
M

 c
as

e

0.30 0.50 0.70 1.100.90 1.30 1.50

Fig. 15. Preferred dark matter region for nonuniversal gaugino masses. Contours of
Ωχh2 of 0.01, 0.1, 0.3, 1.0 and 10.0 from left to right, respectively, are given as a function of the
ratio of SU(2) to U(1) gaugino masses M2/M1 at the high scale. The unified model is recovered
where the two masses are equal at the high scale, as has been indicated by the dashed line. In this
plot we have set M3 = m1/2 = 200 GeV.

is not hard to understand. For neutralinos of a mass of approximately 100 GeV,

the thermally produced density of particles after reheating is far larger than that

required to account for the nonbaryonic dark matter. But as the universe cools

relic neutralinos must find one another and annihilate into light fields (such as

leptons) before the rate of annihilation falls below the expansion rate of the cosmos.

Typically, weak-scale interaction rates are very close to the needed annihilation

rate as a first approximation. But on closer examination it becomes clear that

annihilation of neutralinos into leptons will only be efficient if diagrams involving

t-channel exchange of sleptons contribute significantly to the total rate. For models

with slepton masses much above 100 GeV this rate quickly drops, particularly

when the LSP is predominantly B-ino like, resulting in far too much relic density

at freeze-out.

In the BGW class of models all scalar fields are very massive, so a priori we

would expect a very significant problem for the relic neutralino density. But the

rather simplified description from the previous paragraph is remarkably sensitive

to the wave-function of the LSP. Let us adopt the following parameterization for
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right. The dotted lines are curves of constant wino content for N2
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this wave-function

χ0
1 = N11B̃ +N12W̃ +N13H̃

0
d +N14H̃

0
u , (379)

which is normalized to N2
11 +N2

12 +N2
13 +N2

14 = 1. In unified models (with low to

moderate tanβ) the LSP is overwhelmingly Bino-like, which is to say that N11 ≃ 1.

If we relax the GUT relationship between the gaugino masses but still remain in the

large |µ| limit (low tanβ) then we will continue to have a predominantly gaugino-

like LSP (N2
11 + N2

12 ≃ 1) with the relative values of N11 and N12 governed by

the relative values of M1 and M2. Decreasing M2 relative to M1 at the electroweak

scale increases the wino content of the LSP until ultimately M1 ≫M2 and N11 ≃ 0,

N12 ≃ 1. The B-ino component of the neutralino couples with a U(1) gauge strength

whereas the wino component couples with the larger SU(2) gauge strength, thus

enhancing its annihilation cross section and thereby lowering its relic density. As

N12 is increased more SUSY parameter space should open up for correct dark

matter abundance until eventually annihilation becomes too efficient and we are

left with no neutralino dark matter at all.

Another important effect of the deviation of gaugino masses from GUT relations

is the increasing importance of co-annihilations between the LSP and other light
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neutralinos and charginos in the early universe. In unified models like minimal su-

pergravity co-annihilation is only important in limited regions of parameter space –

through resonant annihilation diagrams involving the CP-odd neutral Higgs or from

co-annihilation diagrams involving the stau.208,209,210 But in the Kähler-stabilized

models the mass difference between the lightest neutralino and the next-to-lightest

neutral gaugino, or lightest chargino, can be relatively small. This was demon-

strated in the plots of Figure 13. When mass differences between gauginos reach

a few GeV, additional coannihilation processes become efficient at removing relic

LSPs from the early universe. Such processes include χ±
1 χ

0
1 → ff ′ (such as e±νe),

W±γ, and W±Z.

These additional processes were studied in the context of nonuniversal gaugino

masses in References 211 and 212. There it was found that for particular special

ratios of the soft Lagrangian parameters M2/M1 at the high-energy input scale

the relic abundance of neutralinos achieves the observationally preferred values of

Ωχh2 ≃ 0.1 − 0.2 independent of the scalar fermion masses. More specifically, we

fix an overall mass scale for the gauginos by a value of m1/2 ≡ min(M1,M2) and

then allow the larger to vary according to the ratio (M2/M1). Once the gluino mass

is determined in relation to m1/2 the parameters at the low-energy scale can be

found through RG evolution. The preferred ratio of (M2/M1) at the high scale for

the resulting relic density of the LSP is then only a mild function of the value of

the gluino mass relative to m1/2.

The results of scanning over a range of values (M2/M1)high at the high scale

is given in Figure 15, where contours of constant relic density Ωχh2 are given.

Cosmological observations therefore suggest a preferred value of this ratio in the

range 0.6 ≤ (M2/M1)high ≤ 0.85. In Figure 16 we overlay the contours of constant

W -ino fraction in the LSP wavefunction. The impact of additional coannihilation

channels and increased annihilation rates is felt even at relatively small admixtures

of SU(2) gaugino to the predominantly B-ino LSP.

In the BGW class of models this ratio is determined through (195) by the

beta-function coefficients of the Standard Model electroweak gauge groups, the

beta-function coefficient b+ of the condensing gauge group, and the dilaton vev

M2 (µuv)

M1 (µuv)
=
g2
2 (µuv)

g2
1 (µuv)

(1 + b′2ℓ) − (b2/b+) (1 + b+ℓ)

(1 + b′1ℓ) − (b1/b+) (1 + b+ℓ)
. (380)

It is therefore possible to map the results of Figure 16 directly onto the param-

eter space of this class of models. The result is shown in Figure 17. The feature

along the W̃3%|LSP = 1% contour is the Higgs annihilation resonance. The recent

data from the WMAP experiment favors a nonbaryonic dark matter relic density

of Ωχh2 ≃ 0.127,213 which translates into an O(1%) W -ino fraction in the LSP

wave-function for large scalar masses. This is a natural outcome of the Kähler-

stabilization mechanism for reasonable hidden sector configurations.

In Figure 18 we reproduce the parameter space of Figure 8, highlighting the

region in which the Yukawa parameter takes the values 0.1 ≤ (cα)eff ≤ 10 and the
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Fig. 17. Preferred dark matter region in the BGW model. Contours of constant relic
density are given as a function of M0 = m3/2 and b+ by the solid lines. Moving outward from
the left are contours of Ωχh2 =0.1, 0.3 and 1.0. The dotted lines give the value of the LSP wino
content (25%, 4%, 1%, 0.25% from left to right).

resulting gravitino mass is between 100 GeV and 10 TeV. Achieving the proper

LSP thermal relic density singles out a very specific subset of the model space. The

dotted points in Figure 18 represent the subset of parameter choices in a scan over

25,000 possible combinations of {b+, (bαa )eff , (cα)eff} which (a) give rise to gravitino

masses between 100 GeV and 10 TeV, (b) yield a particle spectrum consistent with

experimental bounds, and (c) yield a realistic relic density. Those that give rise to

the WMAP value for Ωχh2 tend to cluster around the value of b+ ≃ 3/8π2 – the

benchmark point of (376) used in the collider studies. We will see below that this

same value of b+ has intriguing implications for the axion sector of the model as

well.

5.5. The axion sector

Banks and Dine78 pointed out some time ago that in a supersymmetric Yang Mills

theory with a dilaton chiral superfield that couples universally to Yang-Mills fields

LY M =
1

8

∑

a

∫
d2θ S(WαWα)a + h.c. , (381)

there is a residual R-symmetry in the effective theory for the condensates of a

strongly coupled gauge sector, provided that (a) there is a single condensation
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Fig. 18. Preferred dark matter region in hidden sector configuration space. This plot
illustrates the dark matter parameter space in terms of the gauge group and matter content

parameters of the hidden sector. The fine points on the left have the preferred value 0.1 ≤ Ωχh2 ≤
0.3 and the coarse points have 0.3 < Ωχh2 ≤ 1.0. The swath bounded by lines (a) and (b) is the
region in which the 0.1 ≤ (cα)eff ≤ 10 and the gravitino mass is between 100 GeV and 10 TeV.
The dotted lines are the possible combination of gauge parameters for different hidden sector
gauge groups.

scale governed by a single β-function, (b) there is no explicit R-symmetry breaking

in the strongly coupled sector, (c) the dilaton S has no superpotential couplings,

and (d) the Kähler potential is independent of ImS. The latter two requirements

are met in effective supergravity obtained from the weakly-coupled heterotic string,

and explicit realizations of this scenario are found in the BGW model described in

Sections 2 and 3, and generalizations thereof to include an anomalous U(1)X that

are discussed in Section 4.

The R-symmetry transformations on the gauginos λa and chiral fermions χA

λa → e
i
2 αλa, χA → e−

i
2αχA, (382)

leave the classical Lagrangian (381) invariant, but are anomalous at the quantum

level:

∆LY M =
iα

8

∑

a

b′a

∫
d2θ(WαWα)a + h.c. , (383)
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with b′a given in (26). In the case that there is a single simple condensing gauge

group Gc, the symmetry can be restored by an axion shift

a = Im s→ a− ib′cα . (384)

If this gauge group becomes strongly coupled at a scale

Λc ∼ e−1/3bcg2
0Λ0 , (385)

with ba as defined in (6), then the effective theory49,19,53,40 below that scale will

have the same anomaly structure as the underlying theory. A potential is generated

for the dilaton Re s, but not for the axion.

If the gauge group is not simple G =
∏

a Ga, the R-symmetry is anomalous but

no mass is generated for the axion as long as there is a single condensate. In the

two-condensate case with β-functions b2 ≪ bc in dilaton stabilization models44,55

the axion acquires a small mass

ma ∼ (Λ2/Λc)
3
2m 3

2
. (386)

In the context of the BGW models, we saw in Sections 2 and 3 that a viable scenario

for supersymmetry breaking occurs if a hidden sector gauge group Gc condenses

with bc ≈ .036, Λc ∼ 1013 GeV and m3/2 ∼ TeV. Then if there is no additional

condensing gauge group other than QCD, the universal axion is a candidate Peccei-

Quinn axion. The result (386) would suggest an axion mass

ma ∼ 10−9eV . (387)

However, the result (386) cannot be directly applied to the QCD axion since QCD

condensation occurs far below the scale of supersymmetry breaking and heavy

modes need to be correctly integrated out. Moreover, the result (386) was ob-

tained under the assumptions that in the hidden sector there are no additional

spontaneously-broken nonanomalous symmetries such as the chiral flavor SU(N) of

QCD, and no gauge invariant dimension-two operators such as quark mass terms.

Under these assumptions two-condensate hidden sector models have a point of

enhanced symmetry where the condensing gauge sectors Ga have the same beta-

function coefficients ba, and the axion mass is proportional to |b1 − b2|.
To investigate whether the string axion can be the QCD axion, we need to

consider the case where the second condensing gauge group GQ is SU(Nc) with a

U(N) flavor symmetry for quark supermultiplets. In this case the point of enhanced

symmetry occurs for214

bc =
Nc

8π2
. (388)

As a result, the standard relation between the axion mass and its Planck scale

coupling constant is modified in this class of models due to a contribution to the

axion-gluon coupling that appears below the scale of supersymmetry breaking when

gluinos are integrated out. Put differently, the axion coupling constant is different
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above and below the scale of supersymmetry breaking. The axion mass vanishes at

the point of enhanced symmetry; for QCD with Nc = 3, this occurs for

bc =
3

8π2
= .038, (389)

which is again in the preferred range .3 ≤ bc ≤ .4 found earlier. As a consequence,

the axion mass is suppressed and higher dimension operators78,215 might lead to

strong CP violation. If on the other hand the string axion acquires a mass as in (386)

from multiple hidden sector condensates, it cannot be the QCD axion. The possibil-

ity of detecting both types of axions has been analyzed216 following the procedures

developed by Fox, Pierce and Scott164 for the case of the string axion with the stan-

dard relation217 between its mass and its string-scale coupling. In all of these cases

the string-scale axion coupling, which in these models is of the order of the reduced

Planck mass, is outside the conventional cosmological bound.165,166,167 Yet this can

be evaded164 by reducing relic axion production with a sufficiently small initial

misalignment angle and/or late entropy release. More specifically, if the classical

dilaton Kähler potential is used, the axion coupling constant is approximately164

Fa ≃ 1016 GeV. When string nonperturbative corrections are invoked to stabilize

the dilaton, they have the effect of enhancing both the dilaton mass and the axion

coupling constant:e Fa ∼ (1/
√

3bc) × 1016 GeV ∼ 1017 GeV.

To understand the origin of the enhanced symmetry points, first consider a

supersymmetric model with condensing gauge group Gc ⊗GQ. Although this is not

a realistic model for QCD, it has the advantages that all the symmetries are manifest

and the effective Lagrangian is highly constrained by supersymmetry. In the absence

of a superpotential there is a classical [U(1)]3 symmetry defined by (382), the chiral

U(1) transformations

Q→ eiβQ, Qc → eiβQc, (390)

introduced in Section 1.2 and

ΦA
c → eiγΦA

c , (391)

all of which can be made nonanomalous by an axion shift. The superpotentialf

W (Π) for the hidden sector condensates Πα
c that is needed for condensation to

occur breaks this symmetry down to [U(1)]2, with the parameter γ restricted such

that

Πα
c → eidα

c γΠα
c = eiαΠα

c , (392)

eIn Ref. 126 it was incorrectly stated that the axion coupling constant was suppressed by these
effects.
fThis may reflect a potential W (Φ) in the classical theory and/or arise from nonperturbative QFT
effects.
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and the anomaly coefficient of the hidden sector condensate Ua is simply given by

the β-function coefficient:

bc = b′c +
∑

α

bαc =
1

8π2

(
Cc − 1

3

∑
A C

A
c

)
, (393)

for dimension-three matter condensates. If there is a second hidden sector with the

same condensate structure, the residual classical symmetry is just U(1), and the

anomaly cannot be canceled by an axion shift unless the beta functions are the

same. On the other hand if the only other condensate is the SUSY QCD one and

the quarks are massless, there is a nonanomalous U(1) defined by (382) and (390)

with

α bc =
1

8π2
[α (Nc −N) + 2βN ] . (394)

If there are no massless quarks, flavor-chiral U(1) symmetry is broken, and there

is no longer the freedom to choose the R-parity of Q; in this case the classical

R-symmetry has β = α/2, and it is anomalous at the quantum level unless

bc =
Nc

8π2
=

b′QNc

Nc −N
. (395)

The effective meson Lagrangian for this toy model has been worked out explicitly.214

The Kähler moduli sector is essentially unchanged with respect to the BGW case,

and we will neglect it here. In the absence of quark masses the scalars and the flavor

singlet pseudoscalar get masses of the order of the gravitino mass, which is the same

as for the BGW model if |uc| ≫ |uQ|, and the flavor adjoint pseudoscalars a as well

as the axion a are massless. When (flavor invariant and generally complex) quark

masses are turned on, these acquire masses in the ratio

ma

ma

≈
√

3v

N
(8π2bc −Nc), v = 〈QcQ〉. (396)

The axion mass vanishes at the symmetry point.

The above toy model is not a realistic model for QCD, but we can modify it in

several ways to make it more closely resemble the MSSM while keeping manifest

supersymmetry of the effective Lagrangian. In the MSSM only n < N chiral super-

multiplets have masses below the condensation scale u
1/3
Q ∼ ΛQ, while m = N − n

chiral supermultiplets have masses MA above that scale. The latter decouple at

scales below their masses, which explicitly break the nonanomalous U(N)L⊗U(N)R

symmetry to a U(n)L⊗U(n)R symmetry if m = N−n quarks are massive. They do

not contribute to the chiral anomaly at the SU(Nc) condensation scale. To account

for these effects we replace b′N in (27) by

b′n = (Nc − n)/8π2, (397)

and replace the second term in (27) by

bαQ
8

∫
d4θ

E

R
UQ

[
ln(detΠn) −

m∑

A=1

lnMA

]
+ h.c. , (398)
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where Πn is an n×n matrix-valued composite operator constructed only from light

quarks. This result can be formally obtained from (27) by integrating out the heavy

quark condensates as follows. As the threshold MA is crossed, set detΠn+A →
πA detΠn+A−1 and take the condensate πA ∼ QAQc

A to be static: K(Πn+A) →
K(Πn+A−1). Then including the superpotential term W (πA) = −MAπ

A, the equa-

tion of motion for FA gives πA = e−K/2uQ/32π2MA, giving (397) and (398) up to

some constant threshold corrections. The flat SUSY analog of (33) is now

W =
1

4
UQ

{
g−2
0 + b′n ln(UQ) + bαQ

[
ln(detΠ) −

m∑

A=1

lnMA

]}
, (399)

and we recover (34)–(35) with now

ΛQ = e−1/3bng2
m∏

A=1

M
b3/3bn

A , 3bn =
3Nc − n

8π2
= 3b′n + 2n b3 , (400)

which corresponds to running g−2(µ) from g−2(1) = g−2
0 to g−2(ΛQ) = 0 using the

β-function coefficient (3Nc − n−A)/8π2 for mA ≤ µ ≤ mA+1, again in agreement

with the results of nonperturbative flat SUSY analyses.57

The anomaly matching conditions in the toy model correctly reproduce44 the

running of g−2 from the string scale to the condensation scale provided supersym-

metry is unbroken above that scale. This is not the case for QCD, and the effective

“QCD” Lagrangian (27) or (398) is not valid below the scale Λc of supersymmetry

breaking. The arguments of the logs are effective infra-red cut-offs. For gauginos

and squarks, they should be replaced by the actual masses, as was done in (398) for

quark supermultiplets with masses above the QCD condensation scale. The gaugino

and squark mass terms are given by

Lmass = −1

2

|m3/2|
F 2

a bc

(
eiωc λ̄RλL + h.c.

)
−m2

3/2|q̃|2, (401)

where Fa is the axion coupling constant

1

F 2
a

= 2〈Kss̄〉 ≈
3

2
b2c , (402)

as defined by its coupling to the gauge fields above the condensation scales

L ∋ − a

4Fa

∑

a

(F · F̃ )a . (403)

The phase ωc of the static condensate uc in (401) is determined by the equations

of motion in terms of the axion

ωc = − a

Fabc
+ φ , (404)

where the constant phase φ includes the phases of the quark mass and of the meson

condensate. The mass terms (401) are invariant under (382) which is spontaneously

broken by the vacuum value uc 6= 0, but remains an exact (nonlinearly realized)

symmetry of the Lagrangian, since the anomaly can be canceled by an axion shift
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as long as QCD nonperturbative effects can be neglected. Since Uc transforms the

same way as UQ, an effective theory with the correct anomaly structure under (382)

and (390) is obtained by using (398) and replacing the first term of (27) by

1

8

∫
d4θ

E

R
UQ

[
b1 ln(e−K/2UQ) + b2 ln(e−K/2Uc)

]
+ h.c. , (405)

provided

b3 =
1

8π2
= bαQ , b1 + b2 =

Nc − n

8π2
= b′n , (406)

and we can choose b1 and b2 to better reflect the correct infrared cut-offs for squarks

and gauginos. The potential is modified, but its qualitative features are the same;

in particular the axion mass is unchanged since it depends only on b1 + b2 = b′n.

The scalar components of the composite chiral superfields UQ and Π are composed

of gauginos and squarks that get large masses proportional to m3/2, while the

true light degrees of freedom are the quarks and gauge bosons. The corresponding

composite operators are the F -components FQ, F of UQ, Π; these were eliminated

by their equations of motion to obtain an effective Lagrangian for the scalars.

We can trade the former for the latter by inverting these equations. Then setting

everything except the light pseudoscalars at their vacuum values, to leading order

in 1/mpl and the quark mass

mq = eiδm, (407)

one obtains the identification

Fn ≈ eiδ
(
c1e

−iP − c0
)
, P = −

√
2a

Fπ
− 8π2bc −Nc

bcn

a

Fa
, Fπ ≈ 2

√
v, (408)

and the effective potential for the light pseudoscalars takes the form

V = cTrFn + h.c. , (409)

which is the standard result in QCD if TrFn is identified with the quark conden-

sate. To check that this identification is correct, we note that under the Kähler

U(1) transformation (382) and the transformation (390) on the n light quark su-

permultiplets, the anomalies induce a shift in the Lagrangian

δL ∋ −1

4

[
αbc(F · F̃ )c + (αb′n + 2nβ)(F · F̃ )Q

]
, (410)

which is canceled in the nonanomalous case (394) by a shift in (403) due to the

axion shift

a→ a− αbcFa . (411)

This gives

Fn → eiαbFFn, bF =
8π2bc −Nc

n
, (412)
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which matches the phase transformation of the quark condensate

χLχ
c
L → eiαbχχLχ

c
L , bχ = 2

β

α
− 1 =

8π2bc −Nc + n

n
− 1 = bF . (413)

For n = 2 we identify the factor exp(i
√

2a/Fπ) with the operator Σ = e2iπiTi/Fπ

of standard chiral Lagrangians, where πi are the canonically normalized pions, and

Ti is a generator of SU(2). That is, we identify ai with πi giving

ma =

∣∣8π2bc −Nc

∣∣
bcn

√
nFπ

Fa

√
2
mπ ≈

√
3|8π2bc −Nc|Fπ

2
√
n

mπ , Fπ ≈ 93 MeV . (414)

The result (414) appears to differ from the standard result by a factor 1−Nc/8π
2bc.

However, Fa is the axion coupling to Yang-Mills fields above the scale of supersym-

metry breaking. When the gluinos of the supersymmetric extension of the Standard

Model are integrated out, a term is generated that modifies the axion coupling

strength to (FF̃ )Q by precisely that factor. This can be seen in two ways.

First, note that in the absence of the light quark mass the Lagrangian is invariant

under (382) together with (390) with β = α/2 for the heavy quark supermultiplets

(φA, χA), and

β =
1

2
+

8π2bc −Nc

2n
, (415)

for the light quark supermultiplets (φi, χi). In order to keep this approximate sym-

metry manifest in the low energy effective theory, we can redefine the fields so as

to remove the ωc-dependence from all terms in the Lagrangian for the heavy fields

that do not involve the light quark mass m:

λa = eiωc/2λ′a, φA = eiωc/2φ′A, χA = χ′A,

φi = eiβωcφ′i, χi = eiγωcχ′i, γ =
8π2bc −Nc

2n
. (416)

The primed fields are invariant under the nonanomalous symmetry, and when ex-

pressed in terms of them, the potential and Yukawa couplings have no dependence

on ωc when m→ 0. This ensures that any effects of integrating out the heavy fields

will be suppressed by powers of m/MA, m/m3/2 relative to the terms retained.

However, these transformations induce new terms in the effective Lagrangian.

First, because the transformation (416) with ωc held fixed is anomalous, it induces

a term

L′ ∋ ∆L = −ωcbc
4

(F · F̃ )Q . (417)

Second, there are shifts in the kinetic terms. The ones that concern us here are the

shifts in the fermion axial connections Am

∆Aλ
m = −1

2
∂mωc , ∆Aχi

m = −γ∂mωc . (418)
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Quantum corrections induce a nonlocal operator coupling the axial connection to

F · F̃ , at scales µ2 ∼ � ≫ m2
λ, through the anomalous triangle diagram

Lqu ∋ −1

4
(F · F̃ )Q

1

�

(
Nc

4π2
∂µAλ

µ +
n

2π2
∂µAχi

µ

)
. (419)

The contribution to (419) from the shift (418) exactly cancels the shift (417) in

the tree level Lagrangian, leaving the aF F̃ S-matrix element unchanged by the

redefinition (416). However at scales µ2 ≪ m2
λ, we replace � → m2

λ in the first term

of (419) because the contribution decouples, but the analogous contribution (417)

to the tree Lagrangian L′ remains in the effective low-energy Lagrangian. This is a

reflection of the fact that the classical symmetry of the unprimed variables, without

a compensating axion shift, is anomalous. The gluino contribution to that anomaly

is not canceled by the gluino mass term, because the gluino mass does not break

the symmetry. Its phase ωc is undetermined above ΛQCD and transforms so as to

make the mass term invariant.

To see that the gluino contribution to the anomaly does not decouple, we write

the (unprimed) gaugino contribution to the one-loop action as

S1 = − i

2
Tr ln(i 6D +mλ) = SA + SN , (420)

where

SA = − i

2
Tr ln(i 6D) (421)

is mass-independent and contains the gaugino contribution to the anomaly

δL ∋ δSA = − αNc

32π2
(F · F̃ )Q . (422)

The mass-dependent piece

SN = − i

2
Tr ln(−i 6D +mλ) +

i

2
Tr ln(−i 6D) (423)

is finite and therefore nonanomalous. A constant mass term would break the sym-

metry and the contribution from SN would exactly cancel that from SA in the

limit µ/mλ → 0. However it clear that SN is invariant under (382) because the

gaugino mass is covariant. On can show214 by direct calculation that gaugino loops

give the contribution (422) under a nonanomalous U(1) transformation in the limit

mλ ≫ µ, which in this limit arises only from the phase of the mass matrix. This

implies that the effective low energy theory must contain a coupling

Leff ∋ Lanom = −ωcNc

32π2
(F · F̃ )Q, (424)

which is precisely the term that is generated by the redefinitions in (416).

Below the scale of QCD condensation standard effective chiral Lagrangian tech-

niques can be used214 to recover (414), or, taking n = 2 and allowing for mu 6= md,

ma ≈ 2mπ
Fπ

√
z

f(1 + z)
, z =

mu

md
, (425)
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where

na

32π2
f−1 =

(
1 − Nc

8π2bc

)
F−1

a , (426)

in agreementg with the result217 of Srednicki. The coupling f is the low energy

axion coupling constant as defined by the convention

L ∋ − na

32π2f

∑

b

(F · F̃ )b, f =
nFa

8π2
, (427)

used by Fox et al.164 The axion coupling to photons is important in direct axion

searches. A similar shift in the axion coupling to SU(2)L gauge fields is generated

when the W -inos are integrated out, with Nc = 2 in (424). Then the couplings

fγ,g(µ) for the canonically normalized gauge fields as measured at a scale µ < mλ

are in the ratio

fγ

fg
=
g2
3(µ)

e2(µ)

8π2bc − 3

8π2bc − 2 sin2 θ(µ)
, (428)

which could be very different from the value at µ > mλ which is just the ratio of the

fine structure constants. In addition there is an induced γWa coupling for µ < mλ.

If use the preferred value bc = .036, we are very close to the symmetric point

for Nc = 3: 8π2bc = 2.84, so we get an (accidental) suppression of the axion mass.

In particular, if bcℓ≪ 1 and n = 2 we obtain

ma ≈ 5 × 10−13 eV, (429)

which raises the issue of the importance of higher dimension operators that might

contribute to the axion potential and destroy the solution to the strong CP problem.78

Indeed, exactly at the point of enhanced symmetry bc = 8π2Nc, the nonanomalous

symmetry with (415) does not include a chiral transformation on the quarks, and

one loses the solution to the CP problem. The axion decouples from the quarks in

the effective Lagrangian, and its vev cannot be adjusted to make the quark mass

matrix real in the θ = 0 basis.

There is no reason to expect that nature sits at this point, but if the axion

mass is very small one should worry about other sources of an axion potential.

The contribution of higher dimension operators was studied in Reference 215 in

the context of modular-invariant gaugino condensation models. Modular invariance

severely restricts the allowed couplings; the leading contribution to the axion mass

takes the form

m′2
a ≈ 9

4
bcp

3|u|2k′λ|η2e−K/2u|p (430)

where λ is a dimensionless coupling constant, and p is the smallest integer allowed

by T-duality. An orbifold compactification model with three complex moduli and an

gThe coupling constant f used by Srednicki217 is a factor two larger than the one defined in (427)
and used by Fox et al.164
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[SL(2,Z)]3 symmetry has p = 12, and, with the values of the various parameters

used above and λ ≈ 1, one finds m′
a ≈ 10−63eV, which is completely negligible.

However if the symmetry is restricted, for example, to just SL(2,Z) one has p = 4

and the contribution from (430) is of the order of (429). The axion potential takes

the form

V (a) = −f2m2
a cos(a/f + φ0) − f ′2m′2

a cos(a/f ′) ,
1

f ′ =
p

bc

1

Fa
=

p n

8π2bc −Nc

1

f
, (431)

where we have absorbed constant phases in a and/or in φ0 so as to make the

coefficients negative. The strong CP problem is avoided if for some value of bc
the vacuum has 〈θ̄〉 = 〈n(a/f + φ0)/2〉 < 10−9 for any value of φ0. For values

of bc in the preferred range .3 ≤ bc ≤ .4 this does not occur. For example for

bc = .036 with p = 4 and f ′/f ≈ 1/50, this requires f ′2m′2
a /f

2m2
a < 10−10, whereas

evaluating (431) gives f ′2m′2
a /f

2m2
a ≈ 4 × 10−4 in this case. A numerical analysis

shows that the CP problem is avoided provided p ≥ 5, that is, provided the T-

duality group is not the minimal one, which is in fact the case for most orbifold

compactifications of the weakly-coupled heterotic string.

The reasoning leading to (430) is similar to that used in Section 5 in the dis-

cussion of R-parity. In the language of Kähler U(1) supergravity, superpotential

terms must have Kähler U(1) weight 2, where chiral fields ZA have weight 0 and

the Yang-Mills superfield strength Wα has weight 1. Thus the following terms with

at least one factor WαWα are allowed

LSP =
1

2

∫
d4θFWαWαF(e−K/2WαWα, Z

A) + h.c. . (432)

Invariance under the T-duality transformations (340) restricts the function F to

the form

F = F(η2e−K/2WαWα, η
AΦA), η =

∏

I

ηI , ηA =
∏

I

η
2qA

I

I , ηI = η(T I). (433)

Consider first terms with no ΦA-dependence; since for a general transformation (340)

δI = nIπ/12, the only invariant superpotential is of the form:

LHW =
1

2

∫
d4θ

E

R
WαWαF(η2e−K/2WαWα) + h.c. , F(X) =

∑

n=1

λnX
12n.(434)

If the [SL(2,Z)]3 symmetry implied by (340) were instead restricted, say to just

SL(2,Z), with aI , bI , cI , dI , independent of I as in (76) and (84), then the phase

of η is 3δI = nπ/4, and lower dimension operators would be allowed: F(X) =∑
n=1 λnX

4n. These give the estimate in (430).

In addition to the operators in (433) chiral superfields with zero chiral weight can

be constructed using chiral projections of any functions of chiral fields. Operators

of this type were found218 in (2,2) orbifold compactifications of the heterotic string
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theory with six dynamical moduli. In the class of models considered here we can

construct zero-weight chiral superfields of the form

F = e−(p+n)K/2(WαWα)pη2(p+n)
n∏

i=1

(D2 − 8R)fi[|ηI |4(tI + t̄I)] (435)

that are modular invariant provided (p + n)
∑

I δ = mπ. Since 〈F I〉 = 0, the

corresponding terms in the potential at the condensation scale are proportional

toh |u|p(m 3
2
)n+1, so for fixed p + n one is trading factors of |u| for factors of

m3/2 ∼ 10−2|u|, and these contributions to the axion mass will be smaller than

those in (430).

We may also consider operators with matter fields that have nonvanishing vevs.

Since e−K/2WαWα transforms like the composite operators U1U2U3 constructed

from untwisted chiral superfields, the rules for construction of a covariant superpo-

tential including this chiral superfield can be directly extracted from the discussion

in Section 5.1 of modular-invariant superpotential terms in the class of Z3 orbifolds

considered here. They take the form of (433) with

Fpnq = Πq(e−K/2WαWα)pη2(p+n)
n∏

α=1

Wi, (p+ n)
∑

I

δI = mπ, (436)

where Π = Y 1Y 2Y 3 is the product of twisted sector oscillator superfields introduced

in Section 5.1, and Wi is any modular covariant zero-weight chiral superfield that

is a candidate superpotential term (subject to other constraints such as gauge

invariance). For example, the superpotential terms for matter condensates could

contribute to this expression. However the equations of motion for the auxiliary

fields of these condensates give Wi ∼ m3/2 for these terms, so again they are less

important than the contribution in (430).

Most Z3 orbifold compactifications of the type considered here have an anoma-

lous U(1) gauge group, with the anomaly canceled by a Fayet-Illiopoulos D-term,

as discussed in Section 4. A number n of scalars φA acquire vevs along an F - and

D-flat direction such that m ≤ n U(1)a gauge factors are broken at a scale ΛD that

is close to the Planck scale. A priori there might be gauge- and modular-invariant

monomials of the form (436) with considerably larger vevs than those in (434), and

no modular covariant, gauge invariant superpotential term Wi, so that the direc-

tion φA 6= 0 is F -flat. However if m = n, there is no gauge invariant monomial∏
A(φA)pA . Gauge invariance requires

∑

A

pAq
a
A = 0 ∀a, (437)

hThe coefficients of the nonpropagating condensate superfield auxiliary fields vanish by their
equations of motion.
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where qa
A is the U(1)a, charge of φA. If m = n these are linearly independent and

form an m×m matrix with inverse QA
a ; then (437) implies

pA = 0 ∀A. (438)

Similarly, for the chiral projection of a monomial
∏

A(φA)pA+qA(φ̄Ā)qA gauge in-

variance still requires (437) and (438), so any such monomial can be written in the

form

f(T J , T
J
)
∏

A

[
|φA|2

∏

I

(T I + T
I
)−qA

I

]qA

. (439)

It is the modular invariant composite fields |φA|2∏I(T
I +T

Ī
)−qA

I that acquire large

vevs; any coefficients of them appearing in overall modular-invariant operators are

subject to the same rules of construction as the operators in (435). The same

considerations hold if N sets of fields φA
i with identical U(1)a, charges (qi

A)a = qa
A,

i = 1, . . . , N acquire vevs.

In the general case with n > m one cannot rule out the above terms. However in

this case part of the modular symmetry is realized nonlinearly on the U(1)a-charged

scalars after U(1)a-breaking. Monomials of the above type would generate mixing

of the axion with massless “D-moduli” that are Goldstone particles associated with

the degeneracy of the vacuum at the U(1)a-breaking scale, requiring a more careful

analysis.

5.6. Early universe physics

So far in this section we have focused on phenomena relevant for low-energy ob-

servations in the late-time universe. Yet string theory is meant to provide a single

framework for understanding all phenomena, including the physics of the early uni-

verse. Therefore, a string-derived effective supergravity model – to the extent that

it is a complete description of the underlying string degrees of freedom – should pro-

vide such things as an inflaton candidate, a baryogenesis mechanism and a source

for the dark energy in the universe. And it should do these things while allowing

for the successful predictions of the Big Bang Nucleosynthesis (BBN) theory. In

this section we will concern ourselves with some of these topics where a definite

statement can be made in the context of the BGW class of models.

Scalar field inflation has long been the leading paradigm for understanding the

horizon and flatness problems of the big bang cosmology.219,220 All supersymmetric

theories provide many such scalar fields – and string-derived models have still more.

The latter include the moduli fields that have been our focus throughout this work.

These fields carry no Standard Model quantum numbers and provide an interesting

possibility to realize the “sterile” field models that are common in inflation theories.

Unfortunately, it has long been appreciated that maintaining adequate flatness of

the potential to achieve slow-roll is difficult in supergravity models of scalar fields
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in an expansionary universe.221 Higher-order Kähler potential terms are the most

troublesome since they do not benefit from nonrenormalization theorems.

In this section we will consider a hybrid inflation scenario suggested by the

BGW class of theories, in which some field other than the inflaton is displaced from

its vacuum value and thereby generating most of the potential during inflation. The

necessary linear and bilinear terms in the superpotential will be the result of some

fields getting vevs when an FI D-term is driven to small values, while preserving

SUSY and some flat directions. To be more specific, consider a theory of untwisted

matter having a Kähler potential given by (81) from Section 2. Let us assume

that during some period of inflation all matter from twisted sectors have vanishing

vevs. If we further assume that the limit
〈
(zi)I

〉
≪
〈
tI
〉

during inflation, then it is

permissible to regard the scalar fields

xI = tI + t̄I −
∑

i

|(zi)I |2 (440)

as the low energy degrees of freedom. Theories described in this manner are of the

flat no-scale type and enjoy a Heisenberg symmetry.222,223 Typically such a model

has a minimum only in the limit as xI → ∞, but the presence of FI D-terms of the

form (202)

DX = −2

(
∑

i

Kiq
X
i (zi)I + ξ

)
, Ki =

∂K

∂(zi)I
ξ =

g2
str

TrQX

192π2
m2

pl
, (441)

can prevent this runaway behavior because of the nontrivial xI dependence of the

metric Ki. The GS term will preserve this Heisenberg invariance provided that it

also depends on the moduli only through the combination xI . This is to say, pi = bgs

in (116) for the untwisted fields.

Other terms in the superpotential which involve the twisted sector fields will

explicitly break the Heisenberg invariance, but these are small effects during infla-

tion by assumption. For the scalar components of the twisted sector fields we can

define a quantity

Xi ≡
∏

I

(xI)−qI
i |zi|2 (442)

such that (the scalar part of) the Kähler potential reads

K = ln(ℓ) + g(ℓ) −
∑

I

lnxI +
∑

i

Xi . (443)

Therefore, near the origin in scalar field space, we can write the Kähler metric for

arbitrary matter field zi as

Ki =
∏

I

z̄i(xI)−qI
i ; Kī =

∏

I

δī(x
I)−qI

i . (444)
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As for the superpotential, we assume as always that its form is dictated by the

requirements of modular invariance. Written in terms of scalar fields it is given by

W =
∑

m

λm

∏

i

(zi)ni
m

∏

I

η(tI)2(
P

i ni
mqI

i −1) , (445)

which is the equivalent to what was considered in (125) for the hidden sector matter

condensates. The integers ni
m are nonnegative. Note that this implies

∂W

∂tI
≡WI = 2ζ(tI)

(
∑

i

qI
i z

iWi −W

)
, (446)

and tI are stabilized at one of the two self-dual points.

Now if we are concerned with cases in which 〈V 〉 ≫ u2 – that is, cases in which

the vacuum energy is much greater than the size of the eventual gaugino condensates

– then the terms involving the condensates u can be neglected in the scalar potential

of the BGW model. This leaves us with two sources for the scalar potential: possible

D-terms from an anomalous U(1) and derivatives of the superpotential in (445) with

respect to the chiral matter. Let us take a very simple ansatz. Assume that each

individual term in (445) vanishes (which is to say that at least one scalar field in

each term in (445) has vanishing vev). Also assume that all Wi vanish except for

one i in the untwisted sector. Without loss of generality assume that this field is

associated with I = 3 so that i = C3. Finally, assume that all matter field values

are much smaller than one in Planck-scale units. The potential in this limit is

V =
ℓeg(ℓ)

(1 + bgsℓ)x1x2
|WC3|2 . (447)

Let us take WC3 to depend only on x1 and x2 so that the moduli are stabilized

but a flat direction persists for t3 as well as matter fields in the I = 3 sector. The

inflaton could be identified with a particular combination of these fields.i

To achieve something like this simplified scenario one might imagine that the

superpotential that arises from the string compactification has a form

W = λ
[
η(t1)η(t2)

]−2
zC3

∏

i6=C3

zi
∏

I

[
η(tI)

]−2qI
i . (448)

Then to obtain the desired form of WC3 we must suppose that during inflation

there are nonzero and modular-invariant vevs for certain zi’s:〈
|zi|2

∏

I

(xI)−qI
i

〉
= ci

〈
ℓ di

∏

I

[
xI |η(tI)|4

]pI
i

〉
(449)

where ci is a constant. But in fact vevs of precisely this form are indeed induced

at the anomalous U(1)X scale, as was discussed in Section 4. Simply consider the

expression in (441) with g2
str

= 2ℓ/1 + f(ℓ) and use (444) to find the form for Ki.

iIn fact, the canonically normalized inflaton field ϕ can be found (up to a phase) in this simple
case by inverting the relationship |z3

C | =
√

t3 + t̄3 tanh(ϕ/
√

2).226
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This yields a vev of the form in (449) with pI
i = 0 and di = 1. Once these vevs are

integrated out of the theory the moduli dependence of (447) is then simply

V ∝
∏

I

[
|η(tI)|4xI

]nI

, n1,2 =
∑

i

(p1,2
i q1,2

i ) − 1 , n3 =
∑

i

(p3
i + q3i ) . (450)

To achieve flat directions and a realistic inflaton it is necessary that at least one of

the nI vanish. If the remaining nI are negative then the corresponding moduli are

stabilized at tI = eiπ/6. The dilaton dependence of (445) is then

V ∝ eg(ℓ)ℓd

1 + bgsℓ
, d = 1 +

∑

i

di (451)

which slightly modifies the minimization conditions for the dilaton when d 6= 1,

though weak-coupling solutions with the domain of attraction can be found.224,225,226

Note that this scenario actually generates a precisely flat potential. Ending in-

flation therefore requires a perturbation on the scenario. These could come from (a)

having some terms in W that do not vanish during inflation, (b) having additional

fields which contribute to (445) beyond our one untwisted field, and/or (c) assum-

ing that the D-term is not forced to vanish but instead driven to very small but

nonvanishing values. The resulting theory will be a hybrid inflation model which

is a variant on that of Ref. 227. Flat directions involving the untwisted sector are

lifted by mass terms with a typical size that is |m(zi)I |2 ∼ m2
tI

provided the field

vevs satisfy
〈
|(zi)I |2

〉
<∼
〈
Re tI

〉
. This contribution is generally negative and much

smaller than that induced by loop effects.223 If either is the dominant source of

nonvanishing slope for the inflaton potential then one expects the spectral index

n = 1 + 2m2/V to be very close to unity.

Finally, we must worry about the overall scale of the inflationary potential,

which is constrained by the Cosmic Background Observer (COBE) normalization

to have V 1/4 <∼ 10−2mpl. This will require that the superpotential (448) that gives

rise to (445) involve nonrenormalizable operators. The scale of the potential is given

by

V = λΛ−2nξ
2(2+n)
D (452)

where Λ2 = g2
str
m2

pl
and λ is a ratio of dimensionless couplings in the superpoten-

tial. The mass dimension of the term that contains z3
C is 3 + n. We see, therefore,

that

V 1/4 ∼ λ1/4gstr

(
TrQX

192π2

)(2+n)/4

mpl (453)

which implies n = 1 or n = 2 is necessary to match the COBE normalization.

After inflation ends the moduli must end up at the minima of the scalar poten-

tial. This can be problematic for moduli whose potential is generated by nonper-

turbative effects. In particular, for the dilaton the scalar potential after inflation

is generated by gaugino condensation and is quite steep for large field values (see
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Figure 4, with only a small barrier separating the nontrivial minimum from the

vacuum with vanishing gauge coupling. One might worry that the dilaton field will

“overshoot” the desired minimum at the end of inflation.228 However, recent work

demonstrates that this is not the case with the nonperturbative corrections (60)

employed in the BGW model.229,230,226 If during an expansionary period the dila-

ton begins at some point in its scalar potential which corresponds to a regime of

strong coupling, then over a wide range of initial field values it will enter a quasi-

scaling regime as it evolves towards its (weak-coupling) true minimum. This is in

spite of the rather steep potential set up by gaugino condensates (and Kähler sta-

bilization). This expansionary period must be generated by some other field in the

theory, however. In Ref. 229 the minimum number of e-foldings Nmin required such

that the dilaton enters the scaling regime for m3/2 = 1 TeV, g2
str

= 1/2 and a

radiation-dominated universe was found to be Nmin = 11. It was therefore claimed

in that work that the dilaton in the BGW model should enter its scaling regime

and therefore end up at the global minimum after inflation (without overshooting)

provided the dilaton scalar is significantly more massive than the gravitino.

This is not the only instance in which the masses of the moduli fields play an

important role in the physics of the early universe. We generally expect re-heating

after inflation to produce states whose masses are less than or on the order of the

reheat temperature TRH. Of particular interest are those scalar fields which have

no classical potential. Being flat directions, these scalars are likely to take large

field values away from their eventual minima. As the universe cools, oscillations

of these fields about their minimum-energy configurations will generally produce

too much energy density to be consistent with the known age of the universe unless

their masses are impossibly small.169,170,171 They therefore must decay, but as these

particles interact with the observable sector only via Planck-suppressed operators,

their resulting lifetime is generally quite long. When they decay, light elements

produced via BBN will be dissociated. It is therefore necessary that the decay of

these moduli fields reheat the universe once again, with a reheat temperature this

time of order the BBN scale of 1 MeV. A simple computation reveals that the

needed TRH can be achieved provided the moduli have masses of O(10 TeV) or

higher.171,231

In the BGW class of models the corrections to the dilaton metric result in an

enhancement of the dilaton scalar mass relative to the that of the gravitino. The

masses obey the relation

mℓ

m3/2
≃ 1

b2+
≫ 1 . (454)

For the case of the E6 condensates with 9 fundamentals of matter this implies

mℓ ∼ 103m3/2 ∼ 3000 TeV. This is sufficient to keep the dilaton in the domain of

attraction for its post-inflation potential while simultaneously avoiding the cosmo-

logical problem for this modulus.

More problematic are the Kähler moduli. Their masses can be found from the
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second derivative of the scalar potential

∂2V

∂(tI)2
≃ 1

32ℓ2

∑

ab

ρaρb

[
π2

9

ℓ2

(1 + bgsℓ)
(b− ba)(b − bb)

]
≃ ρ2

+

π2

288

(b− b+)2

1 + bgsℓ
, (455)

from which we extract the normalized mass-squared

m2
tI

≃
〈
ρ2
+

π2

36

(b− b+)2

1 + bgsℓ

〉
. (456)

When bgs > b+, as when b+ = 3/8π2 and bgs = bE8 = 30/8π2, one can enhance the

Kähler modulus mass by an order of magnitude relative to the gravitino mass. But

this is roughly the largest such an enhancement can be. For more realistic scenarios

we expect bgs to be similar in magnitude to the value of b+. However, when there

are anomalous U(1) factors the equation of motion for the auxiliary fields of the

Kähler moduli are modified to the form of (264) from Section 4. In this case the

Kähler moduli masses are enhanced relative to the those given above for the same

values of bgs and b+. We conclude that the masses of the moduli in the BGW class of

models are likely to be sufficiently large to avoid the cosmological moduli problem,j

but that the actual resolution of the problem is dependent on the parameters that

arise from the underlying string construction.

Conclusion – Where do we go from here?

In this review we have tried to take the reader on a largely self-contained exploration

of one particularly well-understood corner of the moduli space of M-theory. We be-

gan by introducing the notion of string moduli, reviewing the manner in which

nonperturbative field theory effects can be employed to produce a potential for

their scalar components. As these scalar fields determine all dimensionless parame-

ters in the low-energy effective supergravity Lagrangian, this is clearly the heart of

any phenomenological treatment of string theoretic models. The well-known short-

comings of the traditional treatments of moduli stabilization were demonstrated:

the need for multiple condensates and the difficulty in finding a minimum with

vanishing vacuum energy. The BGW class of models remedies both problems by

utilizing nonperturbative corrections to the Kähler potential of the dilaton, thereby

generating an acceptable level of supersymmetry breaking with vanishing vacuum

energy. As with all such methods of supersymmetry breaking, some degree of tuning

between the various parameters of the theory must be employed.

The importance of dealing with the above issues cannot be overstated. Without

achieving a minimum for the overall scalar potential such that the vacuum energy

is negligible, no truly meaningful statements about supersymmetry breaking, the

superpartner spectrum or phenomenology can be made. By negligible we will mean

small on the scale of particle physics experiments, i.e. significantly smaller than the

jRecall that typical gravitino masses are already in the multi-TeV range, so enhancement factors
of 5 to 10 may be sufficient.
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electroweak scale. Given any particular mechanism to achieve 〈V 〉 ≃ 0, the degree to

which we can achieve precisely vanishing vacuum energy is a function of the amount

of fine-tuning we can engineer in the model. It is to be expected – and is generally

the case in explicit examples – that any such mechanism for achieving vanishing

vev for the scalar potential will have some sort of “back-reaction” on the observable

sector particle physics. In other words, if one simply assumes that 〈V 〉 ≃ 0 by some

unspecified mechanism then it is natural to wonder whether this mysterious sector

truly plays no role in determining the low-energy phenomenology of the model

in question. The BGW class of weakly-coupled heterotic string models has the

virtue of being forthright in addressing the problem. Since the Kähler stabilization

has real effects on the resulting phenomenology (mostly good ones, we hasten to

add) it is perfectly reasonable as string phenomenologists to study this mechanism.

Comparing eventual data to the resulting “complete” theory then in part tests this

mechanism for stabilizing the moduli and achieving appropriate vacuum energy.

We do not know, in general, how a small vacuum energy arises from any quantum

theory, let alone a string-based one. Therefore other mechanisms should be sought

out, but a framework which envisions no such mechanism must eventually make

only empty statements about Nature.

Starting from the context of weakly-coupled heterotic string theory an effective

supergravity theory was built in Section 2 to describe the dynamics of the low

energy four-dimensional world. The form of this effective Lagrangian was guided by

the principle of target space modular invariance. This symmetry acts as a classical

symmetry of the supergravity Lagrangian. The underlying string theory informs us

that it should be a good symmetry to all orders in the string perturbation expansion.

Therefore we ought to ensure that it remains an intact symmetry to all orders in

quantum field theory. The anomalies associated with modular invariance can be

remedied by terms arising from the string theory itself: Green-Schwarz counterterms

and threshold corrections to gauge coupling constants. We saw that these are easiest

to implement when the dilaton is packaged in the linear multiplet. This is no surprise

since the degrees of freedom of the string are precisely those of the linear multiplet

and the genus-counting parameter is the real object ℓ. The drawback is that the

axion sector is slightly more difficult to discuss and less familiar than the dual

pseudoscalar treatment.

Modular invariance proves to be a powerful constraint. Preserving it when inte-

grating out heavy matter at the anomalous U(1) scale can imply a relation between

string selection rules, modular invariance and an intact R-parity. This, in turn, has

implications for stable relics (dark matter) and the issue of rapid proton decay. In

conjunction with the Kähler corrections for the dilaton it led to a vacuum solution

in which Kähler moduli are fixed at self-dual points where their auxiliary fields

vanish. It is the dilaton, therefore, which communicates supersymmetry breaking

to the fields of the observable sector. This is an example of the (generalized) dilaton

domination scenario. In Section 3 we demonstrated that at tree-level scalar masses
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and trilinear A-terms are universal. The field-theory loop corrections are small and

the higher-order terms in the Kähler potential may preserve the resulting FCNC

suppression provided certain well-motivated isometries exist from the compactifica-

tion. Gaugino masses are generally an order of magnitude smaller than scalars since

the same mechanism which allows for an acceptable vacuum tends to dramatically

alter the Kähler metric of the dilaton (whose effective auxiliary field determines

the size of gaugino masses). The model therefore predicts scalar masses to be in

the multi-TeV range, with implies a further suppression of superpartner-mediated

FCNC and CP-violating effects. The relatively light gluino implies reduced fine-

tuning in the electroweak sector despite the heavy scalars. In Section 5 we saw

that it also has profound implications for the signature of this class of models at

hadron colliders. The fact that tree level gaugino masses are similar in size to cer-

tain loop-induced terms gives rise to a mixed modulus/anomaly-mediation scenario

for gauginos. Achieving the right scale of superpartner masses tended to imply a

very particular set of possible hidden sector configurations. These just so happen

to be configurations in which the relic abundance of (stable) neutralinos is natu-

rally in the right range to account for the non-baryonic dark matter as suggested

by the WMAP experiment. Furthermore, the range of parameters singled out by

these considerations also happens to coincide with the range in which the model-

independent axion can be the QCD axion which solves the strong-CP problem.

Finally we note that (modulo the issues of Section 4) the physical masses of the

scalar moduli tend to be significantly larger than that of the gravitino, perhaps

by as much as an order of magnitude. Since avoiding the direct search constraints

on light gauginos will tend to imply m3/2 of several TeV, this should significantly

mitigate the cosmological problems associated with the moduli. The above results

are promising, but require specific parameter choices from the string model. This

is not necessarily a bad thing – it demonstrates that low-energy phenomenology

has an impact on the viability of a certain string framework! This is the essence of

string phenomenology.

Though this class of theories is arguably the most complete string model in

the literature, there are many topics that were not addressed. Most significantly

is the issue of initial conditions, alluded to in the Introduction. We have assumed

the minimal field content for a supersymmetric version of the Standard Model.

It is by no means clear whether this should be the goal of string model-builders.

For example, we expect on general principles that no fields in the massless spec-

trum of the superstring will have a supersymmetric mass. Therefore we expect the

Higgs µ-parameter and any potential Majorana mass for right-handed neutrinos to

arise only dynamically from the vev of some fields from outside the MSSM field

content. We have addressed neither issue within this review, and indeed string the-

ory is largely silent on these important issues.k We also assumed that the tree level

kSome examples specific to the weakly-coupled heterotic string have been
studied.232,233,234,235,236,237,238,239
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Kähler metric for chiral matter can be made diagonal in the flavor basis. This is the

standard supersymmetric flavor problem which all theories, whether string-based

or otherwise, share. In some string constructions, such an assumption can be di-

rectly examined, but in many constructions the relation between the flavor indices

of chiral matter and the underlying compact geometry is obscure. Other important

issues are the question of CP-violating phases in the soft supersymmetry-breaking

Lagrangian, the possible presence of charge and color-breaking minima, the mech-

anism for baryogenesis, and the issue of creating an explicit model for inflation.

Let us finally address the very place we began this investigation: the weakly-

coupled E8 ⊗E8 heterotic string. Despite the many clear phenomenological advan-

tages of this starting point, other string constructions have moved to the fore in

recent years. In part this is due to their ability to achieve the same outcomes of the

weak-coupling heterotic string: N = 1 supersymmetry, chiral matter, a natural hid-

den sector, anomaly cancelation, and (sometimes) gauge coupling unification. But

primarily it is because of the issue that has so motivated this concluding section –

the issue of supersymmetry breaking and vanishing vacuum energy. Very promising

mechanisms now exist in other corners of the M-theory landscape for addressing

these problems.47 Of significance is the fact that a very large number of solutions

with gaugino condensation and background flux are possible, each such solution

giving rise to a vacuum with a slightly different value of 〈V 〉 for the geometrical

moduli. The numerical coefficients in the gaugino condensation part of the effec-

tive scalar potential are ultimately discrete numbers, determined by the underlying

string theory, just as in the examples considered in this review. But the part of the

effective scalar potential generated by the non-trivial fluxes can be treated as effec-

tively continuous in these contexts. This allows for a very finely-grained instrument

for tuning the resulting vacuum-energy – a “knob” which is explicitly lacking in the

context of weakly-coupled heterotic models.240,241,242,243,244

In the current context we have not sought to use the nonperturbative correc-

tions represented by the expansion in (60) to tune 〈V 〉 to match the comparative

small value implied by recent supernova data. Nevertheless, the results we achieve

requires tuning the various coefficients in (60). Just like the coefficients in (26)

that appear in the effective Lagrangian for the condensates, we should expect that

these parameters can not be changed by infinitesimally small amounts. It remains

an open question, therefore, as to whether the nonperturbative effects in (60) can

truly generate a potential with vanishing vev in realistic heterotic string compacti-

fications. At the moment it is unclear whether analogs exist in the heterotic context

for these flux compactification scenarios, though treatments of a more phenomeno-

logical spirit have given rise to interesting results.245 The nonperturbative Kähler

potential corrections included in the BGW model have two virtues. They are known

to exist and take a well-defined functional form. Yet it may be argued that it is in-

consistent from the point of view of effective field theory to include nonperturbative

contributions prior to examining the relevant perturbative contributions.187,246 Con-

sideration of perturbative corrections to the Kähler potential has already proven
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fruitful in other string frameworks.247,248,249,250,251

This is an exciting time for string phenomenology. The rapid progress being

made in understanding the dynamics of string theory in various corners of the

M-theory landscape is about to be joined by data from a number of forthcoming

experiments. The domain in which these two themes intersect is the effective su-

pergravity Lagrangian describing string moduli, their interaction with matter and

their stabilization. Unlike bottom-up models constructed to describe only one set of

phenomena (such as the process of electroweak symmetry breaking), string-based

models have the burden and the opportunity to describe much more. Classes of

string models with some claim to this level of “completeness” are growing, though

many challenges remain ahead of us. The question of whether the post-LHC era

will be a golden age for string phenomenology will largely depend on how well

we address these challenges and the deepening of the vertical integration between

phenomenologists and formal theorists.

Acknowledgements

We would like to thank Joel Giedt for reviewing the manuscript and for helpful

conversations on many of the points contained in this article. We would also like

to acknowledge discussions with G. Kane, T. Taylor, F. Quevedo, B. Kain and

S. Kachru. Finally, we would like to thank the Kavli Institute for Theoretical Physics

at U.C. Santa Barbara for hosting the authors during a portion of the writing of this

work. This research was supported in part by the National Science Foundation under

Grant no. PHY99-07949. MKG is supported in part under Department of Energy

contract DE-AC02-05CH11231 and in part by the National Science Foundation

under grant PHY-0457315.

Appendix A. An overview of Kähler U(1) superspace

The action for the coupling of matter fields to supergravity is described in the

conventional superspace approach34 by the quantity

Lkin = −3

∫
E e−

1
3K(Φ,Φ̄) (A.1)

where E denotes the super-determinant of the super-vielbein E A
M and the measure is

understood to be d2θ d2θ̄2. The component expression of (A.1) contains the kinetic

terms for the supergravity multiplet as well as the matter multiplets Φ. However,

this component expression yields the correct normalization for the Einstein term of

the gravity action only after a field-dependent re-scaling of the component fields.252

One must assign the transformation property under Kähler transformations to these

re-scaled fields (not the superfields that appear in the superspace Lagrangian).

Through a combination of classical symmetries of the supergravity Lagrangian

– specifically Kähler transformations and super-Weyl (or Howe-Tucker) re-scalings
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– it is possible to absorb the exponential factor into the super-determinant

Lkin = −3

∫
E′ . (A.2)

In other words, in this new frame the kinetic Lagrangian is nothing more than

-3 times the volume of superspace. The Kähler U(1) formalism incorporates these

transformations into the structure group of superspace,33 thereby dispensing with

the need for conformal compensators and/or Weyl re-scalings of the component

field Lagrangian. Kähler transformations are now understood at the superfield level

and the Einstein term automatically has the canonical normalization.

The structure group of Kähler U(1) geometry contains the usual Lorentz trans-

formations as well as an additional chiral U(1). This additional chiral U(1) acts on

a superfield Φ of chiral weight w as Φ → Φ exp
(
− i

2 wImF
)
, where F is a superfield.

To incorporate this transformation into the structure of superspace one constructs

a connection AM with which one forms a covariant derivative in superspace with

respect to this additional symmetry operation. The superfield AM associated with

this transformation has the following components

Aα =
1

4
DαK, Aα̇ = −1

4
Dα̇K (A.3)

Aµ =
1

4

(
Ki∂µϕ

i −K̄∂µϕ
̄
)

+
i

8
Kīσ

α̇α
µ χi

αχ
̄
α̇ , (A.4)

where ϕ = Φ|θ=θ̄=0 and χα = DαΦ|θ=θ̄=0. We see that the gauge field of a Kähler

U(1) transformation is a composite object made up of the various chiral fields in

the theory. The effect of a Kähler U(1) transformation is simply to shift the vector

part of the connection as

Aµ → Aµ − ∂µ

(
− i

2
ImF

)
(A.5)

in analogy to Abelian gauge theory.

One can now use this symmetry to remove the superpotential and Yang-Mills

kinetic terms from the F-density part of the Lagrangian (those terms that involve in-

tegration over only half of superspace) and recast the entire superspace Lagrangian

in the form of D-densities (integration over all of superspace). The Kähler potential

only appears implicitly, through the connections in the covariant derivatives used to

obtain the component-field expression. The Kähler U(1)-invariant kinetic terms for

the matter fields are now interpreted as the “FI term” for the Kähler potential. The

single expression (A.2) contains the kinetic terms for the entire supergravity/matter

system. In the chiral formulation of the dilaton (or in the absence of a dilaton) the

kinetic terms for the Yang-Mills sector must be introduced through an F-density

expression as in (11). In the formalism of the modified linear multiplet, however,

these terms are also incorporated in a single expression of the form (A.2), though

the expression (A.2) is generalized to the form

Lkin = −3

∫
E F (Φ,Φ, L) , (A.6)
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as was done in (44) of Section 1.3.

To obtain the component expression from any superfield Lagrangian density in

Kähler U(1) superspace, one may employ the chiral density method. This is the

locally supersymmetric generation of the F -term construction in global supersym-

metry. Consider a superspace expression of the form L =
∫
EΩ, where Ω is a real

superfield that has weight wΩ = 0. Using integration by parts in U(1) superspace

we can rewrite this expression as

L =

∫
E

2R
r; r = −1

8
(D2 − 8R)Ω . (A.7)

The component Lagrangian can now be expressed in terms of this quantity r via

the following rule

1

e
Leff = −1

4
D2

r|θ=θ̄=0 +
i

2
(ψ̄µσ̄

µ)αDαr − (ψ̄µσ̄
µν ψ̄ν +M)r|θ=θ̄=0 + h.c. , (A.8)

whereM = −6R†|θ=θ̄=0 is the supergravity auxiliary field whose vev determines the

gravitino mass via 9m2
3/2 =

〈
|M |2

〉
. More details on the procedure can be found

in Reference 73 where the complete component Lagrangian for the most general

model of the BGW class is given.

As an example, let us consider an extension of the simple model from Section 1

with Lagrangian density

Leff =

∫
d4θ E {−2 + f(L) + bL

∑

I

gI + bL ln(e−KUU/µ6) } . (A.9)

That is, we consider the theory defined by (66) but extended to include Kähler

moduli and universal anomaly cancelation. The Green-Schwarz term of (116) is

taken to have vanishing pi so that Vgs =
∑

I g
I ≡ G, and bgs = b for the single

condensing gauge group. To apply (A.8) we must work with the quantities

r = − 1

8
(D2 − 8R){ (−2 + f(L) ) + bLG + bL ln(e−KŪU/µ6) },

r̄ = − 1

8
(D2 − 8R†){ (−2 + f(L) ) + bLG + bL ln(e−KŪU/µ6) }. (A.10)

If we are interested in the purely bosonic part of the component Lagrangian then

we must compute the first and last terms of (A.8). Computing Mr|θ=θ̄=0 + h.c.

is straight-forward, but the first term in (A.8) requires more care. In particular we

will need to concern ourselves with quantities such as (D2R+D2
R†) and (DαXα +

Dα̇X
α̇), where

Xα = −1

8
(D2 − 8R)DαK ; X α̇ = −1

8
(D2 − 8R†)Dα̇K . (A.11)

In our simple example these quantities are related in the following manner
(
L

dg(L)

dL
+ 1

)
(D2R+ D2

R†) + (DαXα + Dα̇X
α̇) = ∆ (A.12)
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where the bosonic components of ∆ are

∆|θ=θ̄=0 = − 1

ℓ2
(ℓ2g′′ − 1)∂µℓ ∂µℓ +

1

ℓ2
(ℓ2g′′ − 1)vµvµ + 2∇m∇mk

+ 4
∑

I

1

(tI + t̄I)2
∂µt̄I ∂µt

I − 4

9
(ℓ2g′′ − ℓg′ − 2)MM

+
4

9
(ℓ2g′′ + 2ℓg′ + 1)baba − 4

∑

I

1

(tI + t̄I)2
F

I
F I

− 4

3ℓ
(ℓ2g′′ + ℓg′)vµe a

µ ba − 1

2ℓ
(ℓg′ + 1)(FU + F Ū )

− 1

6ℓ
(2ℓ2g′′ − ℓg′ − 3)(uM + ūM ) − 1

4ℓ2
(ℓ2g′′ − 1)ūu . (A.13)

In the above we have defined

g′ = g′(ℓ) =
dg(L)

dL

∣∣∣∣
θ=θ̄=0

; g′′ = g′′(ℓ) =
d2g(L)

dL2

∣∣∣∣
θ=θ̄=0

, (A.14)

the field vµ is the vector component of the linear multiplet (38), and ba = −3Ga|θ=θ̄=0

is an auxiliary field of the supergravity multiplet which is constrained to vanish in

the vacuum. The complete bosonic component Lagrangian for (A.9) is given by72

1

e
LB = − 1

2
R − 1

4ℓ2
(ℓg′ + 1)∂µℓ ∂µℓ − (1 + bℓ)

∑

I

1

(tI + t̄I)2
∂µt̄I ∂µt

I

+
1

4ℓ2
(ℓg′ + 1)vµvµ +

1

9
(ℓg′ − 2)

[
MM − baba

]
+ (1 + bℓ)

∑

I

1

(tI + t̄I)2
F

I
F I

+
1

8ℓ
{ f + 1 + bℓ ln(e−kūu/µ6) + 2bℓ }(FU + F Ū )

− 1

8ℓ
{ f + 1 + bℓ ln(e−kūu/µ6) +

2

3
bℓ(ℓg′ + 1) }(uM + ūM )

− 1

16ℓ2
(1 + 2bℓ)(ℓg′ + 1)ūu

− i

2
b ln(

ū

u
)∂µvµ − i

2
b
∑

I

1

(tI + t̄I)
( ∂µt̄I − ∂µtI )vµ. (A.15)
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